Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 136(16)2023 08 15.
Article in English | MEDLINE | ID: mdl-37505110

ABSTRACT

Multiciliated cells contain hundreds of cilia whose directional movement powers the mucociliary clearance of the airways, a vital host defense mechanism. Multiciliated cell specification requires canonical Wnt signaling, which then must be turned off. Next, ciliogenesis and polarized ciliary orientation are regulated by noncanonical Wnt/planar cell polarity (Wnt/PCP) signaling. The mechanistic relationship between the Wnt pathways is unknown. We show that DKK3, a secreted canonical Wnt regulator and WNT4, a noncanonical Wnt ligand act together to facilitate a canonical to noncanonical Wnt signaling switch during multiciliated cell formation. In primary human airway epithelial cells, DKK3 and WNT4 CRISPR knockout blocks, whereas ectopic expression promotes, multiciliated cell formation by inhibiting canonical Wnt signaling. Wnt4 and Dkk3 single-knockout mice also display defective ciliated cells. DKK3 and WNT4 are co-secreted from basal stem cells and act directly on multiciliated cells via KREMEN1 and FZD6, respectively. We provide a novel mechanism that links specification to cilium biogenesis and polarization for proper multiciliated cell formation.


Subject(s)
Epithelial Cells , Wnt Signaling Pathway , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cilia/metabolism , Epithelial Cells/metabolism , Mice, Knockout , Wnt4 Protein/metabolism
2.
Antioxidants (Basel) ; 9(6)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545518

ABSTRACT

Nrf2 is a transcription factor that regulates cellular redox balance and the expression of a wide array of genes involved in immunity and inflammation, including antiviral actions. Nrf2 activity declines with age, making the elderly more susceptible to oxidative stress-mediated diseases, which include type 2 diabetes, chronic inflammation, and viral infections. Published evidence suggests that Nrf2 activity may regulate important mechanisms affecting viral susceptibility and replication. We examined gene expression levels by GeneChip microarray and by RNA-seq assays. We found that the potent Nrf2-activating composition PB125® downregulates ACE2 and TMPRSS2 mRNA expression in human liver-derived HepG2 cells. ACE2 is a surface receptor and TMPRSS2 activates the spike protein for SARS-CoV-2 entry into host cells. Furthermore, in endotoxin-stimulated primary human pulmonary artery endothelial cells, we report the marked downregulation by PB125 of 36 genes encoding cytokines. These include IL-1-beta, IL-6, TNF-α, the cell adhesion molecules ICAM-1, VCAM-1, and E-selectin, and a group of IFN-γ-induced genes. Many of these cytokines have been specifically identified in the "cytokine storm" observed in fatal cases of COVID-19, suggesting that Nrf2 activation may significantly decrease the intensity of the storm.

3.
Free Radic Biol Med ; 141: 244-252, 2019 09.
Article in English | MEDLINE | ID: mdl-31238128

ABSTRACT

Chronic HIV infection in the era of anti-retroviral therapy is associated with dramatically increased risk of developing severe cardio pulmonary disease. Common to these diseases is increased oxidative burden and chronic inflammation despite low viremia and restoration of CD4+ T-cell levels. Soluble viral factors are heavily implicated in these disease processes, including the HIV Transactivator of Transcription (Tat). Tat is produced in high levels during infection and secreted from infected cells into circulation where it is internalized by bystander cells and is known to regulate inflammatory pathways and elicit a pro-oxidant environment. We have examined the effects of Tat on the anti-oxidant regulatory network driven by the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in primary human pulmonary arterial endothelial cells, which are heavily involved in pathogenesis of HIV associated lung diseases including pulmonary arterial hypertension and COPD. Co-expression of Tat and a luciferase reporter construct driven by the Nrf2 activated anti-oxidant response element (ARE) demonstrated markedly reduced Nrf2/ARE activity, even when stimulated by the potent Nrf2 activating compound PB125. Additionally, Heme-oxygenase-1 (HO-1) transcription was potently repressed by Tat in a cell line as well as primary endothelial cells, and treatment with PB125 failed to restore transcriptional activity. Other anti-oxidant Nrf2 genes examined included NADPH Dehydrogenase Quinone 1 (NQO1) and Sulfiredoxin-1 (SRXN1). NQO1 was repressed basally by Tat, while SRXN1 transcription was refractory to activation by PB125 in the presence of Tat. Lastly, we demonstrated that Tat expressing cells have increased indicators of oxidative stress including elevated production of reactive oxygen species, measured by electron paramagnetic resonance spectroscopy, and increased levels of nitrotyrosine content. These observations suggest a novel mechanism by which HIV Tat increases oxidative burden by dysregulation of the Nrf2/ARE pathway.


Subject(s)
Antioxidants/metabolism , HIV Infections/genetics , NF-E2-Related Factor 2/genetics , Oxidative Stress/genetics , tat Gene Products, Human Immunodeficiency Virus/genetics , Antioxidant Response Elements/genetics , Cell Line , Endothelial Cells/virology , HIV/genetics , HIV/pathogenicity , HIV Infections/metabolism , HIV Infections/virology , Heme Oxygenase-1/genetics , Humans , NAD(P)H Dehydrogenase (Quinone)/genetics , Oxidation-Reduction , Oxidoreductases Acting on Sulfur Group Donors/genetics , RNA, Small Interfering/genetics , Reactive Oxygen Species/metabolism
4.
J Basic Microbiol ; 59(8): 834-845, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31210376

ABSTRACT

A bacterium's ability to thrive in the presence of multiple environmental stressors simultaneously determines its resilience. We showed that activation of the SigB-controlled general stress response by mild environmental or energy stress provided significant cross-protection to subsequent lethal oxidative, disulfide and nitrosative stress in Bacillus subtilis. SigB activation is mediated via the stressosome and RsbP, the main conduits of environmental and energy stress, respectively. Cells exposed to mild environmental stress while lacking the major stressosome components RsbT or RsbRA were highly sensitive to subsequent oxidative stress, whereas rsbRB, rsbRC, rsbRD, and ytvA null mutants showed a spectrum of sensitivity, confirming their redundant roles and suggesting they could modulate the signals generated by environmental or oxidative stress. By contrast, cells encountering stationary phase stress required RsbP but not RsbT to survive subsequent oxidative stress. Interestingly, optimum cross-protection against nitrosative stress caused by sodium nitropruside required SigB but not the known regulators, RsbT and RsbP, suggesting an additional and as yet uncharacterized route of SigB activation independent of the known regulators. Together, these results provide mechanistic information on how B. subtilis promotes enhanced resistance against lethal oxidative stress during mild environmental and energy stress conditions.


Subject(s)
Bacillus subtilis/physiology , Bacterial Proteins/metabolism , Oxidative Stress/physiology , Phosphoprotein Phosphatases/metabolism , Sigma Factor/metabolism , Signal Transduction , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Gene Deletion , Microbial Viability , Nitrosative Stress/physiology , Phosphoprotein Phosphatases/genetics , Phosphoproteins/genetics , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Sigma Factor/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...