Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Toxicol Rep ; 5: 258-269, 2018.
Article in English | MEDLINE | ID: mdl-29854597

ABSTRACT

Systemic health effects from exposure to a complex natural dust containing heavy metals from the Nellis Dunes Recreation Area (NDRA) near Las Vegas, NV, were evaluated. Several toxicological parameters were examined following lung exposure to emissive dust from three geologic sediment types heavily used for recreational off-road activities: yellow sand very rich in arsenic (termed CBN 5); a shallow cover of loose dune sand overlying a gravelly subsoil bordering dune fields (termed CBN 6); and brown claystone and siltstone (termed CBN 7). Adult female B6C3F1 mice were exposed by oropharyngeal administration to these three types of geogenic dusts at 0.01-100 mg of dust/kg of body weight, once per week for four weeks. The median grain sizes were 4.6, 3.1, and 4.4 µm, for CBN 5, 6, and 7, respectively. Each type of dust contained quantifiable amounts of aluminum, vanadium, chromium, manganese, iron, cobalt, copper, zinc, arsenic, strontium, cesium, lead, uranium, and others. Descriptive markers of immunotoxicity, neurotoxicity, hematology, and clinical chemistry parameters were assessed. Notable among all three CBN units was a systemic, dose-responsive decrease in antigen-specific IgM antibody responses. Geogenic dust from CBN 5 produced more than a 70% suppression in IgM responses, establishing a lowest adverse effect level (LOAEL) of 0.01 mg/kg. A suppression in IgM responses and a corresponding increase in serum creatinine determined a LOAEL of 0.01 mg/kg for CBN 6. The LOAEL for CBN 7 was 0.1 mg/kg and also was identified from suppression in IgM responses. These results are of concern given the frequent off-road vehicle traffic and high visitor rates at the NDRA, estimated at 300,000 each year.

2.
Toxicol Rep ; 4: 19-31, 2017.
Article in English | MEDLINE | ID: mdl-28959621

ABSTRACT

The specific health effects of direct inhalation of fine minerogenic dusts generated by natural soil surfaces remain poorly known and relatively little researched. To learn more about this exposure and its contribution to human health effects, we surveyed surface sediment and characterized dust from the Nellis Dunes Recreation Area (NDRA) in Clark County, Nevada, a popular off-road vehicle (ORV) recreational site. Dry drainage systems at NDRA are commonly used as natural trail systems for ORV recreation; these surfaces also are characterized by high concentrations of heavy metals. Geogenic dust with a median diameter of 4.05 µm, collected from drainage surfaces at NDRA contained a total elemental concentration of aluminum (79,651 µg/g), vanadium (100 µg/g), chromium (54 µg/g), manganese (753 µg/g), iron (33,266 µg/g), cobalt (14 µg/g), copper (37 µg/g) zinc (135 µg/g), arsenic (71 µg/g), strontium (666 µg/g), cesium (15 µg/g), lead (34 µg/g), and uranium (54.9 µg/g). Adult female B6C3F1 mice exposed via oropharyngeal aspiration to 0.01-100 mg dust/kg body weight, four times, a week apart, for 28-days, were evaluated for immuno- and neurotoxicological outcomes 24 h after the last exposure. Antigen-specific IgM responses were dose-responsively suppressed at 0.1, 1.0, 10 and 100 mg/kg. Splenic lymphocytic subpopulations, hematological and clinical chemistry parameters were affected. In brain tissue, antibodies against NF-68, and GFAP were not affected, whereas IgM antibodies against MBP were reduced by 26.6% only in the highest dose group. A lowest observed adverse effect level (LOAEL) of 0.1 mg/kg/day and a no observed adverse effect level (NOAEL) of 0.01 mg/kg/day were derived based on the antigen primary IgM responses after subacute exposure to this geogenic dust.

3.
Toxicol Appl Pharmacol ; 304: 79-89, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27221630

ABSTRACT

Geogenic dust from arid environments is a possible inhalation hazard for humans, especially when using off-road vehicles that generate significant dust. This study focused on immunotoxicological and neurotoxicological effects following subacute exposure to geogenic dust generated from sediments in the Nellis Dunes Recreation Area near Las Vegas, Nevada that are particularly high in arsenic; the naturally-occurring arsenic concentrations in these surficial sediments ranged from 4.8 to 346µg/g. Dust samples from sediments used in this study had a median diameter of 4.5µm and also were a complex mixture of naturally-occurring metals, including aluminum, vanadium, chromium, manganese, iron, cobalt, copper, zinc, strontium, cesium, lead, uranium, and arsenic. Adult female B6C3F1 mice exposed via oropharyngeal aspiration to 0.01 to 100mg dust/kg body weight, four times, a week apart, for 28days, were evaluated 24h after the last exposure. Peripheral eosinophils were increased at all concentrations, serum creatinine was dose responsively increased beginning at 1.0mg/kg/day, and blood urea nitrogen was decreased at 10 and 100mg/kg/day. Antigen-specific IgM responses and natural killer cell activity were dose-responsively suppressed at 0.1mg/kg/day and above. Splenic CD4+CD25+ T cells were decreased at 0.01, 0.1, 10, and 100mg/kg/day. Antibodies against MBP, NF-68, and GFAP were selectively reduced. A no observed adverse effect level of 0.01mg/kg/day and a lowest observed adverse effect level of 0.1mg/kg/day were determined from IgM responses and natural killer cell activity, indicating that exposure to this dust, under conditions similar to our design, could affect these responses.


Subject(s)
Arsenic/toxicity , Dust/immunology , Animals , Arsenic/analysis , Blood Urea Nitrogen , Body Weight/drug effects , Complex Mixtures , Creatinine/blood , Dose-Response Relationship, Drug , Dust/analysis , Eosinophils/drug effects , Female , Immunoglobulin M/drug effects , Immunophenotyping , Killer Cells, Natural/drug effects , Mice , Neurofilament Proteins/immunology , Nevada , Organ Size/drug effects , Particle Size , Spleen/pathology
4.
Toxicol Appl Pharmacol ; 291: 1-12, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26644169

ABSTRACT

Exposure to geogenic particulate matter (PM) comprised of mineral particles has been linked to human health effects. However, very little data exist on health effects associated with geogenic dust exposure in natural settings. Therefore, we characterized particulate matter size, metal chemistry, and health effects of dust collected from the Nellis Dunes Recreation Area (NDRA), a popular off-road vehicle area located near Las Vegas, NV. Adult female B6C3F1 mice were exposed to several concentrations of mineral dust collected from active and vegetated sand dunes in NDRA. Dust samples (median diameter: 4.4 µm) were suspended in phosphate-buffered saline and delivered at concentrations ranging from 0.01 to 100 mg dust/kg body weight by oropharyngeal aspiration. ICP-MS analyses of total dissolution of the dust resulted in aluminum (55,090 µg/g), vanadium (70 µg/g), chromium (33 µg/g), manganese (511 µg/g), iron (21,600 µg/g), cobalt (9.4 µg/g), copper (69 µg/g), zinc (79 µg/g), arsenic (62 µg/g), strontium (620 µg/g), cesium (13 µg/g), lead 25 µg/g) and uranium (4.7 µg/g). Arsenic was present only as As(V). Mice received four exposures, once/week over 28-days to mimic a month of weekend exposures. Descriptive and functional assays to assess immunotoxicity and neurotoxicity were performed 24 h after the final exposure. The primary observation was that 0.1 to 100 mg/kg of this sand dune derived dust dose-responsively reduced antigen-specific IgM antibody responses, suggesting that dust from this area of NDRA may present a potential health risk.


Subject(s)
Air Pollutants/immunology , Air Pollutants/toxicity , Dust/immunology , Particulate Matter/immunology , Particulate Matter/toxicity , Recreation , Animals , Environmental Exposure/adverse effects , Female , Killer Cells, Natural/immunology , Metals/immunology , Metals/toxicity , Mice , Mice, Inbred C57BL , Nevada , T-Lymphocytes, Regulatory/immunology , Toxicity Tests, Subacute/methods
5.
Toxicol Rep ; 3: 785-795, 2016.
Article in English | MEDLINE | ID: mdl-28959605

ABSTRACT

Desert areas are usually characterized by a continuous deposition of fine airborne particles. Over time, this process results in the accumulation of silt and clay on desert surfaces. We evaluated health effects associated with regional atmospheric dust, or geogenic dust, deposited on surfaces in the Nellis Dunes Recreation Area (NDRA) in Clark County, Nevada, a popular off-road vehicle (ORV) recreational site frequented daily by riders, families, and day campers. Because of atmospheric mixing and the mostly regional origin of the accumulated particles, the re-suspended airborne dust is composed of a complex mixture of minerals and metals including aluminum, vanadium, chromium, manganese, iron, cobalt, copper, zinc, arsenic, strontium, cesium, lead, uranium, and others. Geogenic dust with a median diameter of 4.1 µm was administered via oropharyngeal aspiration to female B6C3F1 mice at doses of 0.01 to 100 mg dust/kg body weight, four times, a week apart, for 28-days. Immuno- and neurotoxicological outcomes 24 h following the last exposure were evaluated. Antigen-specific IgM responses were dose-responsively suppressed at 0.1, 1.0, 10 and 100 mg/kg/day. Splenic and thymic lymphocytic subpopulations and natural killer cell activity also were significantly reduced. Antibodies against MBP, NF-68, and GFAP were not affected, while brain CD3+ T cells were decreased in number. A lowest observed adverse effect level (LOAEL) of 0.1 mg/kg/day and a no observed adverse effect level (NOAEL) of 0.01 mg/kg/day were derived based on the antigen-specific IgM responses.

6.
Nutrients ; 5(3): 725-49, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23470450

ABSTRACT

The role of selenium (Se) supplementation in cancer prevention is controversial; effects often depend on the nutritional status of the subject and on the chemical form in which Se is provided. We used a combination of in vitro and in vivo models to study two unique therapeutic windows for intervention in the process of cutaneous melanomagenisis, and to examine the utility of two different chemical forms of Se for prevention and treatment of melanoma. We studied the effects of Se in vitro on UV-induced oxidative stress in melanocytes, and on apoptosis and cell cycle progression in melanoma cells. In vivo, we used the HGF transgenic mouse model of UV-induced melanoma to demonstrate that topical treatment with l-selenomethionine results in a significant delay in the time required for UV-induced melanoma development, but also increases the rate of growth of those tumors once they appear. In a second mouse model, we found that oral administration of high dose methylseleninic acid significantly decreases the size of human melanoma xenografts. Our findings suggest that modestly elevation of selenium levels in the skin might risk acceleration of growth of incipient tumors. Additionally, certain Se compounds administered at very high doses could have utility for the treatment of fully-malignant tumors or prevention of recurrence.


Subject(s)
Melanoma/prevention & control , Selenium/therapeutic use , Skin Neoplasms/prevention & control , Animals , Cell Cycle , Cell Line, Tumor , Cell Survival/drug effects , Female , Human Growth Hormone/genetics , Human Growth Hormone/metabolism , Humans , Male , Mice , Mice, Transgenic , Organoselenium Compounds , Proportional Hazards Models , RNA , Selenocysteine/analogs & derivatives , Sodium Selenite , Ultraviolet Rays/adverse effects
7.
Chemosphere ; 89(5): 487-93, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22682893

ABSTRACT

Reduction of hexavalent chromium (Cr(VI)) to trivalent chromium (Cr(III)) in the stomach prior to absorption is a well-recognized detoxification process thought to limit the toxicity of ingested Cr(VI). However, administration of high concentrations of Cr(VI) in drinking water cause mouse small intestinal tumors, and quantitative measures of Cr(VI) reduction rate and capacity for rodent stomach contents are needed for interspecies extrapolation using physiologically-based toxicokinetic (PBTK) models. Ex vivo studies using stomach contents of rats and mice were conducted to quantify Cr(VI) reduction rate and capacity for loading rates (1-400 mg Cr(VI)L(-1) stomach contents) in the range of recent bioassays. Cr(VI) reduction was measured with speciated isotope dilution mass spectrometry to quantify dynamic Cr(VI) and Cr(III) concentrations in stomach contents at select time points over 1 h. Cr(VI) reduction followed mixed second-order kinetics, dependent upon concentrations of both Cr(VI) and the native reducing agents. Approximately 16 mg Cr(VI)-equivalents of reducing capacity per L of fed stomach contents (containing gastric secretions, saliva, water and food) was found for both species. The second-order rate constants were 0.2 and 0.3 L mg(-1) h(-1) for mice and rats, respectively. These findings support that, at the doses that caused cancer in the mouse small intestine (≥ 20 mg Cr(VI)L(-1) in drinking water), the reducing capacity of stomach contents was likely exceeded. Thus, for extrapolation of target tissue dose in risk assessment, PBTK models are necessary to account for competing kinetic rates including second order capacity-limited reduction of Cr(VI) to Cr(III).


Subject(s)
Chromium/chemistry , Chromium/metabolism , Gastric Mucosa/metabolism , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Animals , Biological Assay , Drinking Water/chemistry , Female , Intestinal Mucosa/metabolism , Kinetics , Mice , Models, Biological , Oxidation-Reduction , Rats
8.
Mol Microbiol ; 79(1): 133-48, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21166899

ABSTRACT

In this work we describe the identification of a copper-inducible regulon in Mycobacterium tuberculosis (Mtb). Among the regulated genes was Rv0190/MT0200, a paralogue of the copper metalloregulatory repressor CsoR. The five-locus regulon, which includes a gene that encodes the copper-protective metallothionein MymT, was highly induced in wild-type Mtb treated with copper, and highly expressed in an Rv0190/MT0200 mutant. Importantly, the Rv0190/MT0200 mutant was hyper-resistant to copper. The promoters of all five loci share a palindromic motif that was recognized by the gene product of Rv0190/MT0200. For this reason we named Rv0190/MT0200 RicR for regulated in copper repressor. Intriguingly, several of the RicR-regulated genes, including MymT, are unique to pathogenic Mycobacteria. The identification of a copper-responsive regulon specific to virulent mycobacterial species suggests copper homeostasis must be maintained during an infection. Alternatively, copper may provide a cue for the expression of genes unrelated to metal homeostasis, but nonetheless necessary for survival in a host.


Subject(s)
Copper/metabolism , Mycobacterium tuberculosis/physiology , Regulon , Binding Sites , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Genetic Loci , Humans , Models, Biological , Molecular Sequence Data , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Promoter Regions, Genetic , Sequence Analysis, DNA
9.
Environ Sci Technol ; 42(10): 3861-6, 2008 May 15.
Article in English | MEDLINE | ID: mdl-18546735

ABSTRACT

Rice is a potentially important route of human exposure to arsenic, especially in populations with rice-based diets. However, arsenic toxicity varies greatly with species. The initial purpose of the present study was to evaluate arsenic speciation in U.S. rice. Twenty-four samples containing high levels of arsenic and produced in different regions of the U.S were selected from a previous market-basket survey. Arsenite and dimethyl arsinic acid (DMA) were the major species detected. DMA increased linearly with increasing total As but arsenite remained fairly constant at approximately 0.1 mg kg(-1), showing that rice high in As was dominated by DMA. A similar result was obtained when our data was combined with other published speciation studies for U.S. rice. However, when all published speciation data for rice was analyzed a second population dominated by inorganic As and lower levels of DMA was found. We thus categorized rice into DMA and Inorganic As types. Rice from the U.S. was predominantly the DMA type, as were single samples from Australia and China, whereas rice from Asia and Europe was the Inorganic As type. We suggest that methylation of As occurs within rice and that genetic differences lead to the two rice types. Insufficient understanding of DMA toxicity precludes a firm assessment of the relative health risks associated with the two rice types but, based on current knowledge, we suggest that the DMA rice type is likely to be less of a health risk than the Inorganic As rice type and, on this basis, rice from the U.S. may be safer than rice from Asia and Europe.


Subject(s)
Arsenic/analysis , Environmental Exposure , Oryza/chemistry , Humans , Quality Control , United States
10.
Science ; 319(5865): 962-5, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18276893

ABSTRACT

Bacterial infection often results in the formation of tissue abscesses, which represent the primary site of interaction between invading bacteria and the innate immune system. We identify the host protein calprotectin as a neutrophil-dependent factor expressed inside Staphylococcus aureus abscesses. Neutrophil-derived calprotectin inhibited S. aureus growth through chelation of nutrient Mn2+ and Zn2+: an activity that results in reprogramming of the bacterial transcriptome. The abscesses of mice lacking calprotectin were enriched in metal, and staphylococcal proliferation was enhanced in these metal-rich abscesses. These results demonstrate that calprotectin is a critical factor in the innate immune response to infection and define metal chelation as a strategy for inhibiting microbial growth inside abscessed tissue.


Subject(s)
Abscess/microbiology , Chelating Agents/metabolism , Leukocyte L1 Antigen Complex/metabolism , Manganese/metabolism , Neutrophils/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/growth & development , Abscess/immunology , Abscess/metabolism , Animals , Calcium/metabolism , Chelating Agents/pharmacology , Dimerization , Gene Expression Profiling , Kidney Diseases/immunology , Kidney Diseases/metabolism , Kidney Diseases/microbiology , Leukocyte L1 Antigen Complex/genetics , Leukocyte L1 Antigen Complex/pharmacology , Liver Abscess/metabolism , Liver Abscess/microbiology , Liver Abscess/pathology , Mass Spectrometry , Mice , Staphylococcal Infections/immunology , Staphylococcal Infections/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...