Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 328(3): 900-11, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19098165

ABSTRACT

Neuropeptide Y (NPY) regulates physiological processes via receptor subtypes (Y(1), Y(2), Y(4), Y(5), and y(6)). The Y(5) receptor is well known for its role in appetite. Based on expression in the limbic system, we hypothesized that the Y(5) receptor might also modulate stress sensitivity. We identified a novel Y(5) receptor-selective antagonist, Lu AA33810 [N-[[trans-4-[(4,5-dihydro[1]-benzothiepino[5,4-d]thiazol-2-yl)amino]cyclohexyl]methyl]-methanesulfonamide], that bound to cloned rat Y(5) receptors (K(i) = 1.5 nM) and antagonized NPY-evoked cAMP and calcium mobilization in vitro. Lu AA33810 (3-30 mg/kg p.o.) blocked feeding elicited by intracerebroventricular injection of the Y(5) receptor-selective agonist [cPP(1-7),NPY(19-23),Ala(31),Aib(32),Gln(34)]-hPancreatic Polypeptide in Sprague-Dawley rats. In vivo effects of Lu AA33810 were correlated with brain exposure > or = 50 ng/g and ex vivo Y(5) receptor occupancy of 22 to 95%. Lu AA33810 was subsequently evaluated in models of stress sensitivity. In Fischer 344 rats, Lu AA33810 (30 mg/kg p.o.) attenuated increases in plasma ACTH and corticosterone elicited by intracerebroventricular injection of [cPP(1-7),NPY(19-23),Ala(31),Aib(32),Gln(34)]-hPancreatic Polypeptide. In Sprague-Dawley rats subjected to the social interaction test, Lu AA33810 (3-30 mg/kg p.o.) produced anxiolytic-like effects after acute or chronic treatment. In Flinders sensitive line rats, chronic dosing of Lu AA33810 (10 mg/kg/day i.p.) produced anxiolytic-like effects in the social interaction test, plus antidepressant-like effects in the forced swim test. In Wistar rats exposed to chronic mild stress, chronic dosing of Lu AA33810 (3 and 10 mg/kg/day i.p.) produced antidepressant-like activity, i.e., normalization of stress-induced decrease in sucrose consumption. We propose that Y(5) receptors may function as part of an endogenous stress-sensing system to mediate social anxiety and reward or motivational deficits in selected rodent models.


Subject(s)
Anti-Anxiety Agents/therapeutic use , Antidepressive Agents/therapeutic use , Benzothiepins/therapeutic use , Receptors, Neuropeptide Y/antagonists & inhibitors , Stress, Psychological/drug therapy , Sulfonamides/therapeutic use , Thiazoles/therapeutic use , Animals , Disease Models, Animal , Male , Models, Molecular , Rats , Rats, Inbred F344 , Rats, Wistar
2.
Eur J Pharmacol ; 602(1): 66-72, 2009 Jan 05.
Article in English | MEDLINE | ID: mdl-19027732

ABSTRACT

Antidepressant treatment of two or more weeks in rats has been shown to enhance the locomotor-stimulating effects of dopamine D(2)/D(3) receptor agonists. This action has been attributed to an increased sensitivity of postsynaptic dopamine receptors in the nucleus accumbens, thought to represent an essential mechanism by which antidepressants act therapeutically to enhance reward and motivation. We tested whether the melanin-concentrating hormone receptor(1) (MCH(1)) antagonist SNAP 94847, reported to have antidepressant-like activity in several preclinical behavioral models, mimics this key feature of established antidepressants. Locomotor responses to the dopamine D(2)/D(3) agonist quinpirole following acute or chronic administration of fluoxetine (18 mg/kg/day) or SNAP 94847 (20 mg/kg/day) were assessed in habituated Sprague-Dawley rats, as well as BALB/c and CD-1 mice. Rats showed a significant increase in quinpirole-induced locomotor activity following chronic (2 weeks), but not acute (1 h) fluoxetine or SNAP 94847 administration. BALB/c mice treated for 21 days with fluoxetine or SNAP 94847 showed marked increases in quinpirole-induced locomotor activity, with the onset of hyper-locomotion appearing earlier in the time course after SNAP 94847 compared to fluoxetine. Administration of either compound for 7 days was also sufficient to augment the quinpirole response in BALB/c mice. Fluoxetine and SNAP 94847 (21 days) failed to modify quinpirole responses in CD-1 mice, and the compounds were ineffective after acute administration in both mouse strains. This report demonstrates in two rodent species that chronic treatment with an MCH(1) receptor antagonist, as with clinically proven antidepressants, produces sensitization to the locomotor effects of dopamine D(2)/D(3) agonists.


Subject(s)
Antidepressive Agents/pharmacology , Piperidines/pharmacology , Receptors, Dopamine D2/agonists , Receptors, Dopamine D3/agonists , Receptors, Somatostatin/antagonists & inhibitors , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Fluoxetine/pharmacology , Locomotion/drug effects , Locomotion/physiology , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/metabolism , Time Factors
3.
Proc Natl Acad Sci U S A ; 102(48): 17489-94, 2005 Nov 29.
Article in English | MEDLINE | ID: mdl-16287967

ABSTRACT

The neuropeptide galanin mediates its effects through the receptor subtypes Gal(1), Gal(2), and Gal(3) and has been implicated in anxiety- and depression-related behaviors. Nevertheless, the receptor subtypes relevant to these behaviors are not known because of the lack of available galanin-selective ligands. In this article, we use behavioral, neurochemical, and electrophysiological approaches to investigate the anxiolytic- and antidepressant-like effects of two potent small-molecule, Gal(3)-selective antagonists, SNAP 37889 and the more soluble analog SNAP 398299. Acute administration of SNAP 37889 or SNAP 398299 enhanced rat social interaction. Furthermore, acute SNAP 37889 was also shown to reduce guinea pig vocalizations after maternal separation, to attenuate stress-induced hyperthermia in mice, to increase punished drinking in rats, and to decrease immobility and increase swimming time during forced swim tests with rats. Moreover, SNAP 37889 increased the social interaction time after 14 days of treatment and maintained its antidepressant effects during forced swim tests with rats after 21 days of treatment. In microdialysis studies, SNAP 37889 partially antagonized the galanin-evoked reduction in hippocampal serotonin (5-hydroxytryptamine, 5-HT), as did the 5-HT(1A) receptor antagonist WAY100635. Their combination produced a complete reversal of the effect of galanin. SNAP 398299 partially reversed the galanin-evoked inhibition of dorsal raphe cell firing and galanin-evoked hyperpolarizing currents. These results indicate that Gal(3)-selective antagonists produce anxiolytic- and antidepressant-like effects, possibly by attenuating the inhibitory influence of galanin on 5-HT transmission at the level of the dorsal raphe nucleus.


Subject(s)
Behavior, Animal/drug effects , Hippocampus/metabolism , Indoles/pharmacology , Pyrrolidines/pharmacology , Receptor, Galanin, Type 3/antagonists & inhibitors , Analysis of Variance , Animals , Cell Line , Electrophysiology , Guinea Pigs , Humans , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Piperazines/pharmacology , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Serotonin/metabolism , Social Behavior , Vocalization, Animal/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...