Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 162(6): 501-513, 2022 09.
Article in English | MEDLINE | ID: mdl-35797221

ABSTRACT

Glioblastoma is the most common and malignant type of primary brain tumor. Previous studies have shown that alterations in centrosome amplification and its components are frequently found in treatment-resistant tumors and may be associated with tumor progression. A centrosome protein essential for centrosome biogenesis is the centromere protein J (CENPJ), known to control the proliferation of neural progenitors and hepatocarcinoma cells, and also neuronal migration. However, it remains unknown the role of CENPJ in glioblastoma. Here we show that CENPJ is overexpressed in human glioblastoma cell lines in comparison to human astrocytes. Using bioinformatics analysis, we find that high Cenpj expression is associated with poor prognosis in glioma patients. Examining Cenpj loss of function in glioblastoma by siRNA transfection, we find impairments in cell proliferation and migration. Using a Cenpj mutant version with the deleted PN2-3 or TCP domain, we found that a conserved PN2-3 region is required for glioblastoma migration. Moreover, Cenpj downregulation modulates glioblastoma morphology resulting in microtubules stabilization and actin filaments depolymerization. Altogether, our findings indicate that CENPJ controls relevant aspects of glioblastoma progression and might be a target for therapeutic intervention and a biomarker for glioma malignancy.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Centromere/metabolism , Centromere/pathology , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Glioma/metabolism , Humans
2.
Curr Top Med Chem ; 12(19): 2082-93, 2012.
Article in English | MEDLINE | ID: mdl-23167797

ABSTRACT

Glioblastoma (GBM) is considered incurable due to its resistance to current cancer treatments. So far, all clinically available alternatives for treating GBM are limited, evoking the development of novel treatment strategies that can more effectively manage these tumors. Extensive effort is being dedicated to characterize the molecular basis of GBM resistance to chemotherapy and to explore novel therapeutic procedures that may improve overall survival. Cytolysins are toxins that form pores in target cell membranes, modifying ion homeostasis and leading to cell death. These pore-forming toxins might be used, therefore, to enhance the efficiency of conventional chemotherapeutic drugs, facilitating their entrance into the cell. In this study, we show that a non-cytotoxic concentration of equinatoxin II (EqTx-II), a pore-forming toxin from the sea anemone Actinia equina, potentiates the cytotoxicity induced by temozolomide (TMZ), a first-line GBM treatment, and by etoposide (VP-16), a second- or third-line GBM treatment. We also suggest that this effect is selective to GBM cells and occurs via PI3K/Akt pathway inhibition. Finally, Magnetic resonance imaging (MRI) revealed that a non-cytotoxic concentration of EqTx-II potentiates the VP-16-induced inhibition of GBM growth in vivo. These combined therapies constitute a new and potentially valuable tool for GBM treatment, leading to the requirement of lower concentrations of chemotherapeutic drugs and possibly reducing, therefore, the adverse effects of chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Brain Neoplasms/pathology , Cnidarian Venoms/pharmacology , Dacarbazine/analogs & derivatives , Etoposide/pharmacology , Glioblastoma/pathology , Animals , Blotting, Western , Cell Line, Tumor , Dacarbazine/pharmacology , Drug Synergism , Humans , Immunohistochemistry , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Temozolomide
SELECTION OF CITATIONS
SEARCH DETAIL
...