Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Neuropsychopharmacology ; 48(11): 1594-1601, 2023 10.
Article in English | MEDLINE | ID: mdl-37118058

ABSTRACT

Cognitive impairments predict poor functional outcomes in people with schizophrenia. These impairments may be causally related to increased levels of kynurenic acid (KYNA), a major metabolic product of tryptophan (TRYP). In the brain, KYNA acts as an antagonist of the of α7-nicotinic acetylcholine and NMDA receptors, both of which are involved in cognitive processes. To examine whether KYNA plays a role in the pathophysiology of schizophrenia, we compared the acute effects of a single oral dose of TRYP (6 g) in 32 healthy controls (HC) and 37 people with either schizophrenia (Sz), schizoaffective or schizophreniform disorder, in a placebo-controlled, randomized crossover study. We examined plasma levels of KYNA and its precursor kynurenine; selected cognitive measures from the MATRICS Consensus Cognitive Battery; and resting cerebral blood flow (CBF) using arterial spin labeling imaging. In both cohorts, the TRYP challenge produced significant, time-dependent elevations in plasma kynurenine and KYNA. The resting CBF signal (averaged across all gray matter) was affected differentially, such that TRYP was associated with higher CBF in HC, but not in participants with a Sz-related disorder. While TRYP did not significantly impair cognitive test performance, there was a trend for TRYP to worsen visuospatial memory task performance in HC. Our results demonstrate that oral TRYP challenge substantially increases plasma levels of kynurenine and KYNA in both groups, but exerts differential group effects on CBF. Future studies are required to investigate the mechanisms underlying these CBF findings, and to evaluate the impact of KYNA fluctuations on brain function and behavior. (Clinicaltrials.gov: NCT02067975).


Subject(s)
Kynurenine , Schizophrenia , Rats , Animals , Humans , Tryptophan , Kynurenic Acid/metabolism , Cross-Over Studies , Rats, Wistar , Cognition , Cerebrovascular Circulation
2.
Nat Struct Mol Biol ; 27(9): 855-862, 2020 09.
Article in English | MEDLINE | ID: mdl-32747784

ABSTRACT

The mature retrovirus capsid consists of a variably curved lattice of capsid protein (CA) hexamers and pentamers. High-resolution structures of the curved assembly, or in complex with host factors, have not been available. By devising cryo-EM methodologies for exceedingly flexible and pleomorphic assemblies, we have determined cryo-EM structures of apo-CA hexamers and in complex with cyclophilin A (CypA) at near-atomic resolutions. The CA hexamers are intrinsically curved, flexible and asymmetric, revealing the capsomere and not the previously touted dimer or trimer interfaces as the key contributor to capsid curvature. CypA recognizes specific geometries of the curved lattice, simultaneously interacting with three CA protomers from adjacent hexamers via two noncanonical interfaces, thus stabilizing the capsid. By determining multiple structures from various helical symmetries, we further revealed the essential plasticity of the CA molecule, which allows formation of continuously curved conical capsids and the mechanism of capsid pattern sensing by CypA.


Subject(s)
Capsid Proteins/metabolism , Cyclophilin A/metabolism , HIV Infections/metabolism , HIV-1/physiology , Capsid/chemistry , Capsid/metabolism , Capsid/ultrastructure , Capsid Proteins/chemistry , Capsid Proteins/ultrastructure , Cryoelectron Microscopy , HEK293 Cells , HIV-1/chemistry , HIV-1/ultrastructure , HeLa Cells , Host-Pathogen Interactions , Humans , Models, Molecular , Protein Conformation , Protein Multimerization
3.
Mol Cell ; 79(3): 406-415.e7, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32692975

ABSTRACT

Protein secretion in eukaryotes and prokaryotes involves a universally conserved protein translocation channel formed by the Sec61 complex. Unrelated small-molecule natural products and synthetic compounds inhibit Sec61 with differential effects for different substrates or for Sec61 from different organisms, making this a promising target for therapeutic intervention. To understand the mode of inhibition and provide insight into the molecular mechanism of this dynamic translocon, we determined the structure of mammalian Sec61 inhibited by the Mycobacterium ulcerans exotoxin mycolactone via electron cryo-microscopy. Unexpectedly, the conformation of inhibited Sec61 is optimal for substrate engagement, with mycolactone wedging open the cytosolic side of the lateral gate. The inability of mycolactone-inhibited Sec61 to effectively transport substrate proteins implies that signal peptides and transmembrane domains pass through the site occupied by mycolactone. This provides a foundation for understanding the molecular mechanism of Sec61 inhibitors and reveals novel features of translocon function and dynamics.


Subject(s)
Macrolides/pharmacology , Microsomes/chemistry , Ribosomes/chemistry , SEC Translocation Channels/chemistry , Animals , Binding Sites , Cell-Free System/metabolism , Dogs , Gene Expression , HCT116 Cells , HEK293 Cells , Humans , Macrolides/chemistry , Macrolides/isolation & purification , Microsomes/metabolism , Molecular Dynamics Simulation , Mutation , Mycobacterium ulcerans/chemistry , Mycobacterium ulcerans/pathogenicity , Pancreas/chemistry , Pancreas/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Transport , Ribosomes/metabolism , SEC Translocation Channels/antagonists & inhibitors , SEC Translocation Channels/genetics , SEC Translocation Channels/metabolism , Structural Homology, Protein , Substrate Specificity
4.
Nat Microbiol ; 4(9): 1497-1507, 2019 09.
Article in English | MEDLINE | ID: mdl-31133755

ABSTRACT

The most widespread form of malaria is caused by Plasmodium vivax. To replicate, this parasite must invade immature red blood cells through a process requiring interaction of the P. vivax Duffy binding protein (PvDBP) with its human receptor, the Duffy antigen receptor for chemokines. Naturally acquired antibodies that inhibit this interaction associate with clinical immunity, suggesting PvDBP as a leading candidate for inclusion in a vaccine to prevent malaria due to P. vivax. Here, we isolated a panel of monoclonal antibodies from human volunteers immunized in a clinical vaccine trial of PvDBP. We screened their ability to prevent PvDBP from binding to the Duffy antigen receptor for chemokines, and their capacity to block red blood cell invasion by a transgenic Plasmodium knowlesi parasite genetically modified to express PvDBP and to prevent reticulocyte invasion by multiple clinical isolates of P. vivax. This identified a broadly neutralizing human monoclonal antibody that inhibited invasion of all tested strains of P. vivax. Finally, we determined the structure of a complex of this antibody bound to PvDBP, indicating the molecular basis for inhibition. These findings will guide future vaccine design strategies and open up possibilities for testing the prophylactic use of such an antibody.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Malaria, Vivax/prevention & control , Plasmodium vivax/immunology , Protozoan Proteins/immunology , Receptors, Cell Surface/immunology , Antibodies, Protozoan/chemistry , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Antigens, Protozoan/metabolism , Crystallography, X-Ray , Duffy Blood-Group System/metabolism , Epitopes, B-Lymphocyte , Erythrocytes/parasitology , Genetic Variation , Humans , Immunoglobulin Fab Fragments , Malaria Vaccines/administration & dosage , Malaria, Vivax/parasitology , Plasmodium knowlesi/genetics , Plasmodium knowlesi/growth & development , Plasmodium knowlesi/immunology , Plasmodium vivax/genetics , Plasmodium vivax/growth & development , Protein Binding , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Reticulocytes/parasitology
5.
J Struct Biol ; 203(1): 62-70, 2018 07.
Article in English | MEDLINE | ID: mdl-29398280

ABSTRACT

Centrioles are microtubule-based structures that play essential roles in cell division and cilia biogenesis. Cep120 is an important protein for correct centriole formation and mutations in the Cep120 gene cause severe human diseases like Joubert syndrome and complex ciliopathies. Here, we show that Cep120 contains three consecutive C2 domains that are followed by a coiled-coil dimerization domain. Surprisingly, unlike the classical C2 domains, all three Cep120 C2 domains lack calcium- and phospholipid-binding activities. However, biophysical and biochemical assays revealed that the N-terminal Cep120 C2 domain (C2A) binds to both tubulin and microtubules, and promotes microtubule formation. Structural analyses coupled with mutagenesis identified a highly conserved, positively charged residue patch on the surface of Cep120 C2A, which mediates the interaction with tubulin and microtubules. Together, our results establish Cep120 C2A as a unique microtubule-binding domain. They further provide insights into the molecular mechanism of Cep120 during centriole biogenesis.


Subject(s)
Cell Cycle Proteins/chemistry , Microtubules/metabolism , Protein Interaction Domains and Motifs , Binding Sites , Cell Cycle Proteins/physiology , Dimerization , Humans , Models, Molecular , Mutagenesis, Site-Directed , Protein Binding , Tubulin/chemistry , Tubulin/metabolism
6.
Anticancer Res ; 27(5A): 3219-25, 2007.
Article in English | MEDLINE | ID: mdl-17970064

ABSTRACT

BACKGROUND: Sulfotransferases are present in normal and cancerous human breast tissues. The purpose of this article is to present a hypothetical correlation of sulfotransferase activity with proliferation in breast cancer. MATERIALS AND METHODS: Sulfotransferases were evaluated in breast cancer cells by determining the transformation of non-conjugated estrogens to the sulfates. Proliferation was evaluated by the action on cell growth or the size of a transplanted tumor. The effect was obtained using the progestins: nomegestrol acetate, promegestone, and medrogestone, as well as tibolone and its metabolites at concentrations of 5 x 10(-5) to 5 x 10(-9) M. RESULTS: A possible correlation of sulfotransferase activity stimulation and cell growth inhibition provoked by the various progestins used, or by tibolone and its metabolites was shown. CONCLUSION: It is suggested that the antiproliferative effect of these compounds could be related to the decrease of bioactive estradiol by the formation of its biologically inactive sulfate as a consequence of the stimulatory effect by the various progestins or tibolone on sulfotransferase activity.


Subject(s)
Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Breast/enzymology , Sulfotransferases/metabolism , Antineoplastic Agents, Hormonal/pharmacology , Breast/cytology , Breast/drug effects , Breast Neoplasms/drug therapy , Cell Growth Processes/drug effects , Cell Growth Processes/physiology , Humans , Norpregnenes/pharmacology , Progestins/pharmacology
7.
Anticancer Res ; 25(4): 2827-30, 2005.
Article in English | MEDLINE | ID: mdl-16080533

ABSTRACT

Nomegestrol acetate (NOMAC), a 17alpha-hydroxy-nor-progesterone derivative (17alpha-acetoxy-6-methyl-19-nor-4,6-pregnadiene-3,20-dione, the active substance in Lutenyl), is a potent and useful clinical synthetic progestin for the treatment of menopausal complaints and is under current development for oral contraception. Previous studies in this laboratory demonstrated that NOMAC can block sulfatase and 17beta-hydroxysteroid dehydrogenase, the enzymes involved in the biosynthesis and transformation of estradiol (E2) in hormone-dependent MCF-7 and T-47D breast cancer cells. In the present study, the effect of NOMAC on sulfatase activity using total breast cancer tissue, compared to the effect in normal breast tissue, was explored. Slices of tumoral or normal breast tissues (45-65 mg) were incubated in buffer (20 mM Tris-HCl, pH 7.2) with physiological concentrations of [3H]-estrone sulfate (5x10(-9) M), alone or in the presence of nomegestrol acetate (5x10(-5) - 5x10(-7) - 5x10(-9) M), for 4 h at 37 degrees C. Estrone sulfate (E1S), estrone (E1) and E2 were characterized by thin layer chromatography and quantified using the corresponding standard. It was observed that [3H]- E1S was only converted to [3H]- E1 and not to [3H]- E2, in normal or cancerous breast tissues, which suggests a low or no 17beta-HSD activity under these experimental conditions. The sulfatase activity was more intense with breast cancer tissue than normal tissue, since the concentrations of E1 were 42.5 +/- 3.4 and 27.2 +/- 2.5 pg/mg tissue, respectively. NOMAC, at the concentration of 5x10(-5) M, inhibited this conversion by 49.2% and 40.8% in cancerous and normal breast tissues, respectively. The sulfatase inhibition at low concentration (5x10(-7) M) was 32.5% and 22.8%, respectively. It is concluded that sulfatase activity is almost twice as potent in cancerous breast tissues than in normal tissues. Nomegestrol acetate is a strong anti-sulfatase agent, in particular with cancerous breast tissues. The inhibition of estrone sulfatase activity by NOMAC in total normal or cancerous breast tissues can open attractive perspectives for future clinical trials.


Subject(s)
Breast Neoplasms/enzymology , Megestrol/pharmacology , Norpregnadienes/pharmacology , Steryl-Sulfatase/antagonists & inhibitors , Aged , Breast/drug effects , Breast/enzymology , Breast/metabolism , Breast Neoplasms/drug therapy , Cell Line, Tumor , Estradiol/metabolism , Estrone/analogs & derivatives , Estrone/metabolism , Female , Humans , Middle Aged , Steryl-Sulfatase/metabolism
8.
Anticancer Res ; 24(3a): 1433-8, 2004.
Article in English | MEDLINE | ID: mdl-15274306

ABSTRACT

Estradiol (E2) is one of the main factors which control the growth and evolution of breast cancer. Consequently, to block the formation of E2 inside cancer cells has been an important target in recent years. Breast cancer cells possess all the enzymatic systems (e.g. sulfatase, aromatase, 17beta-hydroxysteroid dehydrogenase [17beta-HSD]) involved in the conversion of estrogen precursors into E2. Sulfotransferase, which converts estrogen to its sulfate, is also present in this tumoral tissue. Duphaston is a synthetic progestogen with properties similar to the natural progesterone. In the present study we examined the effect of Duphaston and its 20-dihydro-metabolite on the sulfatase and 17beta-HSD activities in MCF-7 and T-47D breast cancer cells. The cells were incubated with estrone sulfate (E1S) (5x10(-9)M) in the absence or presence of Duphaston or its 20-dihydro-metabolite (5x10(-5) to 5x10(-9)M) for 24h at 37 degrees C. In another series of experiments, estrone (E1) (5x10(-9)M) was incubated with T-47D cells in the absence or presence of the two progestogens (5x10(-5) to 5x10(-9)M) for 24h at 37 degrees C. E1S, E1 and E2 were characterized by thin layer chromatography and quantified using the corresponding standard. Duphaston and its 20-dihydro-metabolite, at concentrations of 5x10(-7) and 5x10(-5)M, inhibited the conversion of E1S to E2 by 14% and 63%, 65% and 74%, respectively, in MCF-7 cells; the values were 15% and 48% and 31% and 51%, respectively, in T-47D cells. In another series of experiments it was observed that, after 24-h incubation, E1 (5x10(-9)M) was converted in a great proportion to E2 in the T-47D cells and that this transformation was significantly inhibited by Duphaston and its 20-dihydro-metabolite. The IC50 value, corresponding to 50% of the inhibition in the conversion of 1 to E2, was 9x10(-6)M for 20-dihydro-metabolite in this cell line. It was concluded that the progestogen Duphaston and its 20-dihydro-metabolite are potent inhibitory agents on sulfatase and 17beta-HSD activities in breast cancer cells. Duphaston is a progestogen with properties similar to the endogenous progesterone. The data open interesting perspectives to study the biological responses of these progestogens in clinical trials of patients with breast cancer.


Subject(s)
17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Breast Neoplasms/drug therapy , Breast Neoplasms/enzymology , Dydrogesterone/analogs & derivatives , Dydrogesterone/pharmacology , Estrone/analogs & derivatives , Sulfatases/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/metabolism , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Estradiol/biosynthesis , Estrone/metabolism , Humans , Neoplasms, Hormone-Dependent/drug therapy , Neoplasms, Hormone-Dependent/enzymology , Sulfatases/metabolism
9.
J Steroid Biochem Mol Biol ; 84(2-3): 193-8, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12711003

ABSTRACT

Human breast cancer tissue contains enzymes (estrone sulfatase, 17beta-hydroxysteroid dehydrogenase, aromatase) involved in the last steps of estradiol (E(2)) formation. In this tissue, E(2) can be synthesized by two main pathways: (1) sulfatase-transforms estrogen sulfates into bioactive E(2), and the (2) aromatase-converts androgens into estrogens. Quantitative assessment of E(2) formation in human breast tumors indicates that metabolism of estrone sulfate (E(1)S) via the sulfatase pathway produces 100-500 times more E(2) than androgen aromatization. In the present study, we demonstrated in T-47D and MCF-7 human breast cancer cells that norelgestromin (NGMN) (a metabolite of norgestimate) is a potent inhibitory agent of the estrone sulfatase activity. After 24h incubation of physiological concentrations of E(1)S (5 x 10(-9)mol/l) the inhibitory effect of NGMN at concentrations of 5 x 10(-9), 5 x 10(-7) and 5 x 10(-5)mol/l was 43+/-7, 74+/-4 and 97+/-2%, respectively, in T-47D cells; 25+/-4, 57+/-5 and 96+/-2% respectively, in MCF-7 cells. Comparative studies using medroxyprogesterone acetate (MPA) showed that this progestin also has an inhibitory effect on sulfatase activity, but significantly less intense than that of NGMN. The inhibition for MPA at concentrations of 5 x 10(-9), 5 x 10(-7) and 5 x 10(-5)mol/l was 31+/-5, 47+/-3 and 61+/-3%, respectively, for T-47D cells; 6+/-3, 20+/-3 and 63+/-4%, respectively, for MCF-7 cells. In conclusion, the present data show that NGMN is a very potent inhibitory agent for sulfatase activity in the hormone-dependent breast cancer cells, resulting in decreased tissue concentration of E(2). The clinical significance of this finding remains to be elucidated.


Subject(s)
Breast Neoplasms/drug therapy , Contraceptives, Oral, Combined/pharmacology , Medroxyprogesterone Acetate/metabolism , Selective Estrogen Receptor Modulators/pharmacology , Sulfatases/metabolism , Antineoplastic Agents, Hormonal/pharmacology , Drug Combinations , Estradiol/metabolism , Ethisterone/analogs & derivatives , Humans , Inhibitory Concentration 50 , Models, Chemical , Norgestrel/analogs & derivatives , Oximes , Tumor Cells, Cultured
10.
Anticancer Res ; 23(6C): 4651-5, 2003.
Article in English | MEDLINE | ID: mdl-14981909

ABSTRACT

Breast cancer cells possess all the enzymes involved in the last steps of estradiol (E2) bioformation, as well as in its transformation (e.g. sulfotransferases) for the conversion to estrogen sulfates (ES). As ES are biologically inactive, the formation of these conjugates is an important transformation pathway in the control of the hormone. In the present study, we explored the effect of nomegestrol acetate on the sulfotransferase activity in the hormone-dependent MCF-7 and T-47D human breast cancer cells. After 24-h incubation at 37 degrees C of physiological concentrations of estrone ([3H]-E1: 5 x 10(-9) mol/l), it was observed that the sulfotransferase activity was present in both cell lines, since the concentrations of estrogen sulfates found were 9.40 +/- 1.10 in MCF-7 cells and 6.65 +/- 0.72 in the T-47D cells. The presence of ES was found exclusively in the culture medium, which suggests that as soon as the sulfate is biosynthesized it is secreted into the medium. Nomegestrol acetate has a stimulatory effect on sulfotransferase activity: at low doses (5 x 10(-8) and 5 x 10(-7) mol/l) this compound strongly increases the activity of this enzyme by 60.6% and 83%, respectively, in the MCF-7 cells and by 69.2% at 5 x 10(-7) mol/l in T-47D cells. At a high concentration (5 x 10(-5) mol/l) the stimulatory effect of nomegestrol acetate on the sulfotransferase activity was only 5.4% and 6.1%, respectively, in MCF-7 and T-47D cells. In conclusion, the stimulation provoked at low doses by nomegestrol acetate on the estrogen sulfotransferase activity involved in the biosynthesis of the biologically inactive estrogen sulfates in hormone-dependent breast cancer cells is an important effect of this progestin and can open attractive clinical applications.


Subject(s)
Breast Neoplasms/enzymology , Megestrol/pharmacology , Norpregnadienes/pharmacology , Progesterone Congeners/pharmacology , Sulfotransferases/metabolism , Biotransformation , Estrone/metabolism , Female , Humans , Kinetics , Sulfotransferases/drug effects , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...