Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 22(17)2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34502238

ABSTRACT

Inherited retinal dystrophies (IRD) are due to various gene mutations. Each mutated gene instigates a specific cell homeostasis disruption, leading to a modification in gene expression and retinal degeneration. We previously demonstrated that the polycomb-repressive complex-1 (PRC1) markedly contributes to the cell death process. To better understand these mechanisms, we herein study the role of PRC2, specifically EZH2, which often initiates the gene inhibition by PRC1. We observed that the epigenetic mark H3K27me3 generated by EZH2 was progressively and strongly expressed in some individual photoreceptors and that the H3K27me3-positive cell number increased before cell death. H3K27me3 accumulation occurs between early (accumulation of cGMP) and late (CDK4 expression) events of retinal degeneration. EZH2 hyperactivity was observed in four recessive and two dominant mouse models of retinal degeneration, as well as two dog models and one IRD patient. Acute pharmacological EZH2 inhibition by intravitreal injection decreased the appearance of H3K27me3 marks and the number of TUNEL-positive cells revealing that EZH2 contributes to the cell death process. Finally, we observed that the absence of the H3K27me3 mark is a biomarker of gene therapy treatment efficacy in XLRPA2 dog model. PRC2 and PRC1 are therefore important actors in the degenerative process of multiple forms of IRD.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic , Eye Proteins/physiology , Polycomb Repressive Complex 1/physiology , Proto-Oncogene Proteins/physiology , Retinal Degeneration/pathology , Retinal Rod Photoreceptor Cells/pathology , Retinitis Pigmentosa/pathology , Animals , DNA Methylation , Dogs , Enhancer of Zeste Homolog 2 Protein/genetics , Histones/genetics , Histones/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Retinal Degeneration/etiology , Retinal Degeneration/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinitis Pigmentosa/etiology , Retinitis Pigmentosa/metabolism
2.
Genes (Basel) ; 12(2)2021 02 18.
Article in English | MEDLINE | ID: mdl-33670832

ABSTRACT

Leber congenital amaurosis (LCA) encompasses the earliest and most severe retinal dystrophies and can occur as a non-syndromic or a syndromic disease. Molecular diagnosis in LCA is of particular importance in clinical decision-making and patient care since it can provide ocular and extraocular prognostics and identify patients eligible to develop gene-specific therapies. Routine high-throughput molecular testing in LCA yields 70%-80% of genetic diagnosis. In this study, we aimed to investigate the non-coding regions of one non-syndromic LCA gene, RPGRIP1, in a series of six families displaying one single disease allele after a gene-panel screening of 722 LCA families which identified 26 biallelic RPGRIP1 families. Using trio-based high-throughput whole locus sequencing (WLS) for second disease alleles, we identified a founder deep intronic mutation (NM_020366.3:c.1468-128T>G) in 3/6 families. We employed Sanger sequencing to search for the pathologic variant in unresolved LCA cases (106/722) and identified three additional families (two homozygous and one compound heterozygous with the NM_020366.3:c.930+77A>G deep intronic change). This makes the c.1468-128T>G the most frequent RPGRIP1 disease allele (8/60, 13%) in our cohort. Studying patient lymphoblasts, we show that the pathologic variant creates a donor splice-site and leads to the insertion of the pseudo-exon in the mRNA, which we were able to hamper using splice-switching antisense oligonucleotides (AONs), paving the way to therapies.


Subject(s)
Cytoskeletal Proteins/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Leber Congenital Amaurosis/genetics , Retinal Dystrophies/genetics , Adolescent , Adult , Alleles , Child , Child, Preschool , DNA Mutational Analysis , Exons , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Introns/genetics , Leber Congenital Amaurosis/pathology , Male , Mutation/genetics , Pathology, Molecular , Pedigree , Retinal Dystrophies/pathology , Young Adult
3.
Brain ; 143(10): 2911-2928, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33103737

ABSTRACT

Human post-natal neurodevelopmental delay is often associated with cerebral alterations that can lead, by themselves or associated with peripheral deficits, to premature death. Here, we report the clinical features of 10 patients from six independent families with mutations in the autosomal YIF1B gene encoding a ubiquitous protein involved in anterograde traffic from the endoplasmic reticulum to the cell membrane, and in Golgi apparatus morphology. The patients displayed global developmental delay, motor delay, visual deficits with brain MRI evidence of ventricle enlargement, myelination alterations and cerebellar atrophy. A similar profile was observed in the Yif1b knockout (KO) mouse model developed to identify the cellular alterations involved in the clinical defects. In the CNS, mice lacking Yif1b displayed neuronal reduction, altered myelination of the motor cortex, cerebellar atrophy, enlargement of the ventricles, and subcellular alterations of endoplasmic reticulum and Golgi apparatus compartments. Remarkably, although YIF1B was not detected in primary cilia, biallelic YIF1B mutations caused primary cilia abnormalities in skin fibroblasts from both patients and Yif1b-KO mice, and in ciliary architectural components in the Yif1b-KO brain. Consequently, our findings identify YIF1B as an essential gene in early post-natal development in human, and provide a new genetic target that should be tested in patients developing a neurodevelopmental delay during the first year of life. Thus, our work is the first description of a functional deficit linking Golgipathies and ciliopathies, diseases so far associated exclusively to mutations in genes coding for proteins expressed within the primary cilium or related ultrastructures. We therefore propose that these pathologies should be considered as belonging to a larger class of neurodevelopmental diseases depending on proteins involved in the trafficking of proteins towards specific cell membrane compartments.


Subject(s)
Cilia/genetics , Golgi Apparatus/genetics , Mutation/genetics , Neurodevelopmental Disorders/genetics , Vesicular Transport Proteins/genetics , Animals , Cells, Cultured , Cilia/pathology , Female , Golgi Apparatus/pathology , Humans , Male , Mice , Mice, Knockout , Neurodevelopmental Disorders/diagnostic imaging
4.
Adv Exp Med Biol ; 1185: 189-195, 2019.
Article in English | MEDLINE | ID: mdl-31884610

ABSTRACT

CEP290 mutations cause a spectrum of ciliopathies, including Leber congenital amaurosis. Milder retinal diseases have been ascribed to exclusion of CEP290 mutant exons through basal exon skipping (BES) and/or nonsense-associated altered splicing (NAS). Here, we report two siblings with some preserved vision despite biallelism for presumably severe CEP290 mutations: a maternal splice site change in intron 18 (c.1824 + 3A > G) and a paternal c.6869dup (p.Asn2290Lysfs∗6) in exon 50 that introduces a premature termination codon (PTC) within the same exon. Analyzing mRNAs from fibroblasts of the two siblings, we detected no BES or NAS which could have enabled the production of PTC-free CEP290 isoforms from the paternal allele. In contrast, we reveal partial alteration of exon 18 donor splice site, allowing the transcription of some correctly spliced CEP290 mRNAs from the maternal allele which likely account for the mild retinal disease. This observation adds further variability to the mechanisms underlying CEP290 pleiotropy.


Subject(s)
Antigens, Neoplasm/genetics , Cell Cycle Proteins/genetics , Codon, Nonsense , Cytoskeletal Proteins/genetics , Exons , RNA Splicing , Retinal Diseases/genetics , Humans , Mutation , Siblings
5.
Genes (Basel) ; 10(5)2019 05 14.
Article in English | MEDLINE | ID: mdl-31091803

ABSTRACT

Mutations in CEP290 encoding a centrosomal protein important to cilia formation cause a spectrum of diseases, from isolated retinal dystrophies to multivisceral and sometimes embryo-lethal ciliopathies. In recent years, endogenous and/or selective non-canonical exon skipping of mutant exons have been documented in attenuated retinal disease cases. This observation led us to consider targeted exon skipping to bypass protein truncation resulting from a recurrent mutation in exon 36 (c.4723A > T, p.Lys1575*) causing isolated retinal ciliopathy. Here, we report two unrelated individuals (P1 and P2), carrying the mutation in homozygosity but affected with early-onset severe retinal dystrophy and congenital blindness, respectively. Studying skin-derived fibroblasts, we observed basal skipping and nonsense associated-altered splicing of exon 36, producing low (P1) and very low (P2) levels of CEP290 products. Consistent with a more severe disease, fibroblasts from P2 exhibited reduced ciliation compared to P1 cells displaying normally abundant cilia; both lines presented however significantly elongated cilia, suggesting altered axonemal trafficking. Antisense oligonucleotides (AONs)-mediated skipping of exon 36 increased the abundance of the premature termination codon (PTC)-free mRNA and protein, reduced axonemal length and improved cilia formation in P2 but not in P1 expressing higher levels of skipped mRNA, questioning AON-mediated exon skipping to treat patients carrying the recurrent c.4723A > T mutation.


Subject(s)
Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Retinal Dystrophies/genetics , Codon, Nonsense , Exons/genetics , Eye Abnormalities/genetics , Eye Diseases, Hereditary/genetics , Humans , Male , Neoplasm Proteins/genetics , Oligonucleotides, Antisense/genetics , RNA Splicing , Retina/metabolism , Retinal Dystrophies/physiopathology
6.
Hum Mol Genet ; 27(15): 2689-2702, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29771326

ABSTRACT

CEP290 mutations cause a spectrum of ciliopathies from Leber congenital amaurosis type 10 (LCA10) to embryo-lethal Meckel syndrome (MKS). Using panel-based molecular diagnosis testing for inherited retinal diseases, we identified two individuals with some preserved vision despite biallelism for presumably truncating CEP290 mutations. The first one carried a homozygous 1 base pair deletion in Exon 17, introducing a premature termination codon (PTC) in Exon 18 (c.1666del; p.Ile556Phefs*17). mRNA analysis revealed a basal exon skipping (BES) of Exon 18, providing mutant cells with the ability to escape protein truncation, while disrupting the reading frame in controls. The second individual harbored compound heterozygous nonsense mutations in Exon 8 (c.508A>T, p.Lys170*) and Exon 32 (c.4090G>T, p.Glu1364*), respectively. Some CEP290 lacking Exon 8 were detected in mutant fibroblasts but not in controls whereas some skipping of Exon 32 occurred in both lines, but with higher amplitude in the mutant. Considering that the deletion of either exon maintains the reading frame in either line, skipping in mutant cells likely involves nonsense-associated altered splicing alone (Exon 8), or with BES (Exon 32). Skipping of PTC-containing exons in mutant cells allowed production of CEP290 isoforms with preserved ability to assemble into a high molecular weight complex and to interact efficiently with proteins important for cilia formation and intraflagellar trafficking. In contrast, studying LCA10 and MKS fibroblasts we show moderate to severe cilia alterations, providing support for a correlation between disease severity and the ability of cells to express shortened, yet functional, CEP290 isoforms.


Subject(s)
Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Retinal Diseases/genetics , Adolescent , Adult , Autoantigens/metabolism , Cell Cycle Proteins/metabolism , Centrosome/metabolism , Child , Cilia/physiology , Codon, Nonsense , Codon, Terminator , Cytoskeletal Proteins , Exons , Eye Proteins/metabolism , Female , Fibroblasts/physiology , Humans , Male , Mutation , Protein Transport , RNA Splicing , Retinal Diseases/etiology , Retinal Diseases/pathology , Tumor Suppressor Proteins/metabolism
7.
Am J Hum Genet ; 101(6): 1006-1012, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29198720

ABSTRACT

Leber congenital amaurosis (LCA) is a neurodegenerative disease of photoreceptor cells that causes blindness within the first year of life. It occasionally occurs in syndromic metabolic diseases and plurisystemic ciliopathies. Using exome sequencing in a multiplex family and three simplex case subjects with an atypical association of LCA with early-onset hearing loss, we identified two heterozygous mutations affecting Arg391 in ß-tubulin 4B isotype-encoding (TUBB4B). Inspection of the atomic structure of the microtubule (MT) protofilament reveals that the ß-tubulin Arg391 residue contributes to a binding pocket that interacts with α-tubulin contained in the longitudinally adjacent αß-heterodimer, consistent with a role in maintaining MT stability. Functional analysis in cultured cells overexpressing FLAG-tagged wild-type or mutant TUBB4B as well as in primary skin-derived fibroblasts showed that the mutant TUBB4B is able to fold, form αß-heterodimers, and co-assemble into the endogenous MT lattice. However, the dynamics of growing MTs were consistently altered, showing that the mutations have a significant dampening impact on normal MT growth. Our findings provide a link between sensorineural disease and anomalies in MT behavior and describe a syndromic LCA unrelated to ciliary dysfunction.


Subject(s)
Leber Congenital Amaurosis/genetics , Microtubules/genetics , Tubulin/genetics , Adult , Binding Sites/genetics , Cells, Cultured , Child , DNA Mutational Analysis , Female , Humans , Male , Microtubules/metabolism , Middle Aged , Mutation, Missense/genetics , Photoreceptor Cells/metabolism , Tubulin/metabolism , Exome Sequencing
8.
J Med Genet ; 54(5): 346-356, 2017 05.
Article in English | MEDLINE | ID: mdl-28031252

ABSTRACT

BACKGROUND: Non-syndromic hereditary optic neuropathy (HON) has been ascribed to mutations in mitochondrial fusion/fission dynamics genes, nuclear and mitochondrial DNA-encoded respiratory enzyme genes or nuclear genes of poorly known mitochondrial function. However, the disease causing gene remains unknown in many families. The objective of the present study was to identify the molecular cause of non-syndromic LHON-like disease in siblings born to non-consanguineous parents of French origin. METHODS: We used a combination of genetic analysis (gene mapping and whole-exome sequencing) in a multiplex family of non-syndromic HON and of functional analyses in patient-derived cultured skin fibroblasts and the yeast Yarrowia lipolytica. RESULTS: We identified compound heterozygote NDUFS2 disease-causing mutations (p.Tyr53Cys; p.Tyr308Cys). Studies using patient-derived cultured skin fibroblasts revealed mildly decreased NDUFS2 and complex I abundance but apparently normal respiratory chain activity. In the yeast Y. lipolytica ortholog NUCM, the mutations resulted in absence of complex I and moderate reduction in nicotinamide adenine dinucleotide-ubiquinone oxidoreductase activity, respectively. CONCLUSIONS: Biallelism for NDUFS2 mutations causing severe complex I deficiency has been previously reported to cause Leigh syndrome with optic neuropathy. Our results are consistent with the view that compound heterozygosity for severe and hypomorphic NDUFS2 mutations can cause non-syndromic HON. This observation suggests a direct correlation between the severity of NDUFS2 mutations and that of the disease and further support that there exist a genetic overlap between non-syndromic and syndromic HON due to defective mitochondrial function.


Subject(s)
Mutation/genetics , NADH Dehydrogenase/genetics , Optic Atrophy, Hereditary, Leber/genetics , Adult , Amino Acid Sequence , Animals , Base Sequence , Case-Control Studies , Cattle , Conserved Sequence/genetics , Electron Transport Complex I/chemistry , Electron Transport Complex I/genetics , Female , Fibroblasts/metabolism , Haplotypes/genetics , Heterozygote , Humans , Male , Mitochondria/genetics , Mutant Proteins/metabolism , NADH Dehydrogenase/chemistry , Ophthalmoscopy , Pedigree , Phenotype , Tomography, Optical Coherence , Yarrowia/metabolism
10.
Adv Exp Med Biol ; 854: 517-24, 2016.
Article in English | MEDLINE | ID: mdl-26427454

ABSTRACT

Inherited retinal dystrophies (IRDs) are an extremely heterogeneous group of genetic diseases for which currently no effective treatment strategies exist. Over the last decade, significant progress has been made utilizing gene augmentation therapy for a few genetic subtypes of IRD, although several technical challenges so far prevent a broad clinical application of this approach for other forms of IRD. Many of the mutations leading to these retinal diseases affect pre-mRNA splicing of the mutated genes . Antisense oligonucleotide (AON)-mediated splice modulation appears to be a powerful approach to correct the consequences of such mutations at the pre-mRNA level , as demonstrated by promising results in clinical trials for several inherited disorders like Duchenne muscular dystrophy, hypercholesterolemia and various types of cancer. In this mini-review, we summarize ongoing pre-clinical research on AON-based therapy for a few genetic subtypes of IRD , speculate on other potential therapeutic targets, and discuss the opportunities and challenges that lie ahead to translate splice modulation therapy for retinal disorders to the clinic.


Subject(s)
Oligonucleotides, Antisense/genetics , Retinal Dystrophies/genetics , Retinal Dystrophies/therapy , Targeted Gene Repair/methods , Animals , Disease Models, Animal , Genetic Predisposition to Disease/genetics , Humans , Mutation , RNA Precursors/genetics , RNA Splicing/genetics
11.
Mol Ther Nucleic Acids ; 4: e250, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26325627

ABSTRACT

Leber congenital amaurosis is a severe hereditary retinal dystrophy responsible for neonatal blindness. The most common disease-causing mutation (c.2991+1655A>G; 10-15%) creates a strong splice donor site that leads to insertion of a cryptic exon encoding a premature stop codon. Recently, we reported that splice-switching oligonucleotides (SSO) allow skipping of the mutant cryptic exon and the restoration of ciliation in fibroblasts of affected patients, supporting the feasibility of a SSO-mediated exon skipping strategy to correct the aberrant splicing. Here, we present data in the wild-type mouse, which demonstrate that intravitreal administration of 2'-OMePS-SSO allows selective alteration of Cep290 splicing in retinal cells, including photoreceptors as shown by successful alteration of Abca4 splicing using the same approach. We show that both SSOs and Cep290 skipped mRNA were detectable for at least 1 month and that intravitreal administration of oligonucleotides did not provoke any serious adverse event. These data suggest that intravitreal injections of SSO should be considered to bypass protein truncation resulting from the c.2991+1655A>G mutation as well as other truncating mutations in genes which like CEP290 or ABCA4 have a mRNA size that exceed cargo capacities of US Food and Drug Administration (FDA)-approved adeno-associated virus (AAV)-vectors, thus hampering gene augmentation therapy.

12.
J Med Genet ; 52(10): 657-65, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26275418

ABSTRACT

BACKGROUND: Bidirectional intraflagellar transport (IFT) consists of two major protein complexes, IFT-A and IFT-B. In contrast to the IFT-B complex, all components of IFT-A have recently been linked to human ciliopathies when defective. We therefore hypothesised that mutations in additional IFT-B encoding genes can be found in patients with multisystemic ciliopathies. METHODS: We screened 1628 individuals with reno-ocular ciliopathies by targeted next-generation sequencing of ciliary candidate genes, including all IFT-B encoding genes. RESULTS: Consequently, we identified a homozygous mutation in IFT81 affecting an obligatory donor splice site in an individual with nephronophthisis and polydactyly. Further, we detected a loss-of-stop mutation with extension of the deduced protein by 10 amino acids in an individual with neuronal ceroid lipofuscinosis-1. This proband presented with retinal dystrophy and brain lesions including cerebellar atrophy, a phenotype to which the IFT81 variant might contribute. Cultured fibroblasts of this latter affected individual showed a significant decrease in ciliated cell abundance compared with controls and increased expression of the transcription factor GLI2 suggesting deranged sonic hedgehog signalling. CONCLUSIONS: This work describes identification of mutations of IFT81 in individuals with symptoms consistent with the clinical spectrum of ciliopathies. It might represent the rare case of a core IFT-B complex protein found associated with human disease. Our data further suggest that defects in the IFT-B core are an exceedingly rare finding, probably due to its indispensable role for ciliary assembly in development.


Subject(s)
Cilia/genetics , Cilia/pathology , Eye/pathology , Kidney/pathology , Muscle Proteins/genetics , Humans , Mutation , Sequence Analysis, DNA
13.
Sci Transl Med ; 7(291): 291fs24, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-26062843

ABSTRACT

The total amount of functional mutant protein produced by cells underpins disease pleiotropy in the ciliopathies.


Subject(s)
Disease/genetics , Exons/genetics , Genetic Pleiotropy , Genetic Predisposition to Disease/genetics , Models, Genetic , Humans
14.
J Med Genet ; 51(12): 834-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25351951

ABSTRACT

BACKGROUND: Inherited optic neuropathy has been ascribed to mutations in mitochondrial fusion/fission dynamics genes, nuclear and mitochondrial DNA-encoded respiratory enzyme genes or nuclear genes of poorly known mitochondrial function. However, the disease causing gene remains unknown in many families. METHODS: We used exome sequencing in order to identify the gene responsible for isolated or syndromic optic atrophy in five patients from three independent families. RESULTS: We found homozygous or compound heterozygous missense and frameshift mutations in the gene encoding mitochondrial aconitase (ACO2), a tricarboxylic acid cycle enzyme, catalysing interconversion of citrate into isocitrate. Unlike wild type ACO2, all mutant ACO2 proteins failed to complement the respiratory growth of a yeast aco1-deletion strain. Retrospective studies using patient-derived cultured skin fibroblasts revealed various degrees of deficiency in ACO2 activity, but also in ACO1 cytosolic activity. CONCLUSIONS: Our study shows that autosomal recessive ACO2 mutations can cause either isolated or syndromic optic neuropathy. This observation identifies ACO2 as the second gene responsible for non-syndromic autosomal recessive optic neuropathies and provides evidence for a genetic overlap between isolated and syndromic forms, giving further support to the view that optic atrophy is a hallmark of defective mitochondrial energy supply.


Subject(s)
Aconitate Hydratase/genetics , Mutation , Optic Nerve Diseases/genetics , Aconitate Hydratase/metabolism , Adult , Brain/pathology , Child, Preschool , Citric Acid Cycle , Enzyme Activation , Exome , Fatal Outcome , Female , Gene Expression , Genes, Recessive , High-Throughput Nucleotide Sequencing , Humans , Magnetic Resonance Imaging , Male , Ophthalmoscopes , Optic Atrophy/diagnosis , Optic Atrophy/genetics , Optic Nerve Diseases/diagnosis , Optic Nerve Diseases/metabolism , Patient Outcome Assessment , Siblings
15.
Am J Hum Genet ; 94(6): 891-7, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24814191

ABSTRACT

Epileptic encephalopathies are increasingly thought to be of genetic origin, although the exact etiology remains uncertain in many cases. We describe here three girls from two nonconsanguineous families affected by a clinical entity characterized by dysmorphic features, early-onset intractable epilepsy, intellectual disability, and cortical blindness. In individuals from each family, brain imaging also showed specific changes, including an abnormally marked pontobulbar sulcus and abnormal signals (T2 hyperintensities) and atrophy in the occipital lobe. Exome sequencing performed in the first family did not reveal any gene with rare homozygous variants shared by both affected siblings. It did, however, show one gene, DOCK7, with two rare heterozygous variants (c.2510delA [p.Asp837Alafs(∗)48] and c.3709C>T [p.Arg1237(∗)]) found in both affected sisters. Exome sequencing performed in the proband of the second family also showed the presence of two rare heterozygous variants (c.983C>G [p.Ser328(∗)] and c.6232G>T [p.Glu2078(∗)]) in DOCK7. Sanger sequencing confirmed that all three individuals are compound heterozygotes for these truncating mutations in DOCK7. These mutations have not been observed in public SNP databases and are predicted to abolish domains critical for DOCK7 function. DOCK7 codes for a Rac guanine nucleotide exchange factor that has been implicated in the genesis and polarization of newborn pyramidal neurons and in the morphological differentiation of GABAergic interneurons in the developing cortex. All together, these observations suggest that loss of DOCK7 function causes a syndromic form of epileptic encephalopathy by affecting multiple neuronal processes.


Subject(s)
Blindness, Cortical/genetics , Epilepsy/genetics , GTPase-Activating Proteins/genetics , Intellectual Disability/genetics , Child , Child, Preschool , Epilepsies, Myoclonic/genetics , Exome , Female , GTPase-Activating Proteins/metabolism , Genes, Recessive , Guanine Nucleotide Exchange Factors/genetics , Heterozygote , Homozygote , Humans , Infant , Male , Mutation , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Spasms, Infantile/genetics
16.
Am J Hum Genet ; 92(2): 265-70, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23312594

ABSTRACT

Anophthalmia and microphthalmia (A/M) are early-eye-development anomalies resulting in absent or small ocular globes, respectively. A/M anomalies occur in syndromic or nonsyndromic forms. They are genetically heterogeneous, some mutations in some genes being responsible for both anophthalmia and microphthalmia. Using a combination of homozygosity mapping, exome sequencing, and Sanger sequencing, we identified homozygosity for one splice-site and two missense mutations in the gene encoding the A3 isoform of the aldehyde dehydrogenase 1 (ALDH1A3) in three consanguineous families segregating A/M with occasional orbital cystic, neurological, and cardiac anomalies. ALDH1A3 is a key enzyme in the formation of a retinoic acid gradient along the dorso-ventral axis during early eye development. Transitory expression of mutant ALDH1A3 open reading frames showed that both missense mutations reduce the accumulation of the enzyme, potentially leading to altered retinoic acid synthesis. Although the role of retinoic acid signaling in eye development is well established, our findings provide genetic evidence of a direct link between retinoic-acid-synthesis dysfunction and early-eye-development anomalies in humans.


Subject(s)
Aldehyde Dehydrogenase/genetics , Anophthalmos/enzymology , Anophthalmos/genetics , Genes, Recessive/genetics , Microphthalmos/enzymology , Microphthalmos/genetics , Mutation/genetics , Aldehyde Oxidoreductases , Chromosome Segregation/genetics , Exons/genetics , Female , Genetic Linkage , HEK293 Cells , Homozygote , Humans , Introns/genetics , Male , Mutant Proteins/metabolism , Pedigree , Sequence Analysis, DNA
17.
Mol Ther Nucleic Acids ; 1: e29, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-23344081

ABSTRACT

Leber congenital amaurosis (LCA) is a severe hereditary retinal dystrophy responsible for congenital or early-onset blindness. The most common disease-causing mutation (>10%) is located deep in intron 26 of the CEP290 gene (c.2991+1655A>G). It creates a strong splice donor site that leads to insertion of a cryptic exon encoding a premature stop codon. In the present study, we show that the use of antisense oligonucleotides (AONs) allow an efficient skipping of the mutant cryptic exon and the restoration of ciliation in fibroblasts of affected patients. These data support the feasibility of an AON-mediated exon skipping strategy to correct the aberrant splicing.

18.
Hum Mutat ; 31(3): E1241-50, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20104588

ABSTRACT

Leber congenital amaurosis (LCA) is the earliest and most severe retinal degeneration. It may present as a congenital stationary cone-rod dystrophy (LCA type I) or a progressive yet severe rod-cone dystrophy (LCA type II). Twelve LCA genes have been identified, three of which account for Type I and nine for LCA type II. All proteins encoded by these genes but two are preferentially expressed in the retina and are responsible for non-syndromic LCA only. By contrast LCA5 and CEP290 are widely expressed and mutations in this latter result in a variety of phenotypes from non-syndromic retinal degeneration to pleiotropic disorders including senior-Loken (SNLS) and Joubert syndromes (JBTS). Recently, mutations in the widely expressed gene SPATA7 were reported to cause LCA or juvenile retinitis pigmentosa. The purpose of this study was i) to determine the level of expression of two major alternative SPATA7 transcripts in a large range of tissues and ii) to assess the involvement of this novel gene in a large cohort of unrelated patients affected with LCA (n = 134). Here, we report high SPATA7expression levels in retina, brain and testis with differential expression of the two transcripts. SPATA7 mutations were identified in few families segregating non-syndromic LCA (n = 4/134). Six different mutations were identified, four of which are novel; All affected both SPATA7 transcripts. The clinical evaluation of patients suggested that SPATA7 mutations account for the rod-cone dystrophy type of the disease.


Subject(s)
DNA-Binding Proteins/genetics , Leber Congenital Amaurosis/genetics , Adult , Child , Child, Preschool , Cohort Studies , Female , Humans , Male , Mutation , Phenotype , Retina/pathology , Retinitis Pigmentosa/genetics , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...