Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37685126

ABSTRACT

Bread crust constitutes an important by-product of the bakery industry, and its utilization for the isolation of melanoidins to be used as a functional ingredient can enhance its added value and contribute to health. The aim of this study was to evaluate the bioaccessibility, bioactivity, and genoprotective effect of melanoidins derived from bread crust. Bioaccessibility was assessed in gastric, intestinal digestion, and colonic fermentation fractions. The results revealed a relationship between bioaccessible melanoidins and their type (common or soft bread). No cytotoxicity effects were observed for bioaccessible fractions, as assessed by MTT and RTA methods, and they did not affect the distribution of E-cadherin in Caco-2 cells, confirming their ability to maintain membrane integrity. Furthermore, our study demonstrated that the gastrointestinal and colonic fermentation fractions successfully transported across the intestinal barrier, without affecting cell permeability, and showed antioxidant activity on the basolateral side of the cell monolayer. Remarkably, both fractions displayed a significant genoprotective effect in Caco-2 cells. Our findings provide crucial insights into the relationship between the melanoidins and their bioactivity and genoprotective effect. These results demonstrated the potential of bioaccessible melanoidins as valuable bioactive compounds for the development of functional foods, without showing toxic effects on gastrointestinal cells.

2.
World J Microbiol Biotechnol ; 39(11): 308, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37715930

ABSTRACT

Microbial surfactants are natural amphiphilic compounds with high surface activities and emulsifying properties. Due to their structural diversity, low toxicity, biodegradability, and chemical stability in different conditions, these molecules are potential substitutes for chemical surfactants; their interest has grown significantly over the last decade. The current study focuses on the isolation, identification, and characterization of a lactic acid bacteria that produce two forms of biosurfactants. The OL5 strain was isolated from green olive fermentation and identified using MALDI/TOF and DNAr16S amplification. Emulsification activity and surface tension measurements were used to estimate biosurfactant production. The two biosurfactants derived from Lactiplantibacillus plantarum OL5 presented good emulsification powers in the presence of various oils. They were also shown to have the potential to reduce water surface tension from 69 mN/m to 34 mN/m and 37 mN/m within a critical micelle concentration (CMC) of 7 mg/ml and 1.8 mg/ml, respectively, for cell bound and extracellular biosurfactants. Thin layer chromatography (TLC) and FT-IR were used to analyze the composition of the two biosurfactants produced. the obtained data revealed that the two biomolecules consist of a mixture of carbohydrates, lipids and proteins. We demonstrated that they are two anionic biosurfactants with glycolipopeptide nature which are stable in extreme conditions of temperature, pH and salinity.


Subject(s)
Lactobacillales , Olea , Spectroscopy, Fourier Transform Infrared , Chromatography, Thin Layer , Water
3.
Food Chem ; 427: 136625, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37364313

ABSTRACT

White wine pomace products (wWPP) represent an innovative strategy as a functional food ingredient to be used as a seasoning both for their technological and functional properties. Nevertheless, the bioactive compounds of wWPP used as a seasoning could be modified during storage. The seasoning in the meat, regardless of the storage method used, modified its phenolic profile and in its bioaccessible fractions, while maintaining a high total antioxidant capacity and total polyphenol content. The contact of the seasoning with the meat can be considered safe as it does not show cytotoxicity in the Caco-2 cells. Additionally, the ability to modulate the cell oxidative stress of the bioaccessible fractions and the potential benefits on microbiota by the colonic fermentation fraction, suggest its potential use as a functional ingredient, without being affected by storage. These results are novel and may help to establish the value of this product as a functional ingredient.


Subject(s)
Vitis , Wine , Humans , Animals , Wine/analysis , Antioxidants/analysis , Chickens , Caco-2 Cells , Phenols/analysis , Meat
4.
Crit Rev Food Sci Nutr ; 62(27): 7427-7448, 2022.
Article in English | MEDLINE | ID: mdl-33951976

ABSTRACT

The wine pomace is the main winery by-products that suppose an economic and environmental problem and their use as a functional ingredient are being increasingly recognized as a good and inexpensive source of bioactive compounds. In this sense, it is known the potential health properties of wine pomace products in the prevention of disorders associated with oxidative stress and inflammation such as endothelial dysfunction, hypertension, hyperglycemia, diabetes, obesity. Those effects are due to the bioactive compounds of wine pomace and the mechanisms concern especially modulation of antioxidant/prooxidant activity, improvement of nitric oxide bioavailability, reduction of pro-inflammatory cytokines and modulation of antioxidant/inflammatory signal pathways. This review mainly summarizes the mechanisms of wine pomace products as modulators of oxidative status involved in cell pathologies as well as their potential therapeutic use for cardiovascular diseases. For this purpose, the review provides an overview of the findings related to the wine pomace bioactive compounds profile, their bioavailability and the action mechanisms for maintaining the redox cell balance involved in health benefits. The review suggests an important role for wine pomace product in cardiovascular diseases prevention and their regular food intake may attenuate the development and progression of comorbidities associated with cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Vitis , Wine , Antioxidants/analysis , Biological Availability , Cardiovascular Diseases/prevention & control , Cytokines/metabolism , Humans , Nitric Oxide , Oxidation-Reduction , Oxidative Stress , Signal Transduction , Wine/analysis
5.
Foods ; 10(7)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206875

ABSTRACT

Red wine pomace products (WPP) have antimicrobial activities against human pathogens, and it was suggested that they have a probable anti-Listeria effect. This manuscript evaluates the intestinal cell monolayer invasive capacity of Listeria monocytogenes strains obtained from human, salmon, cheese, and L. innocua treated with two WPP (WPP-N and WPP-C) of different polyphenol contents using Caco-2 and SW480 cells. The invasion was dependent of the cell line, being higher in the SW480 than in the Caco-2 cell line. Human and salmon L. monocytogenes strains caused cell invasion in both cell lines, while cheese and L. innocua did not cause an invasion. The phenolic contents of WPP-N are characterized by high levels of anthocyanin and stilbenes and WPP-C by a high content of phenolic acids. The inhibitory effect of the WPPs was dependent of the strain and of the degree of differentiation of the intestinal cells line. The inhibition of Listeria invasion by WPPs in the SW480 cell line, especially with WPP-C, were higher than the Caco-2 cell line inhibited mainly by WPP-N. This effect is associated with the WPPs' ability to protect the integrity of the intestinal barrier by modification of the cell-cell junction protein expression. The gene expression of E-cadherin and occludin are involved in the L. monocytogenes invasion of both the Caco-2 and SW480 cell lines, while the gene expression of claudin is only involved in the invasion of SW480. These findings suggest that WPPs have an inhibitory L. monocytogenes invasion effect in gastrointestinal cells lines.

6.
Heliyon ; 6(11): e05396, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33294652

ABSTRACT

The functional renal epithelium is composed of differentiated and polarized tubular cells with a strong actin cortex and specialized cell-cell junctions. If, under pathological conditions, these cells have to resist higher kidney osmolarity, they need to activate diverse mechanisms to survive external nephrotoxic agents such as inflammation and oxidative stress. Wine pomace polyphenols exert protective effects on renal cells. In this study, two wine-pomace products and their protective effects upon promotion and preservation of normal cell differentiation and attenuation of oxalate-induced type II epithelial mesenchymal transition (EMT) are evaluated. Treatment with gastrointestinal and colonic bioavailable fractions from red (rWPP) and white (wWPP) wine pomaces, both in the presence and the absence of oxalate, showed similar cell numbers and nuclear size than the non-treated differentiated MDCK cells. Immunofluorescence analysis showed the reduction of morphological changes and the preservation of cellular junctions for the rWPP and wWPP pre-treatment of cells exposed to oxalate injury. Hence, both rWPP and wWPP attenuated oxalate type II EMT in MDCK cells that conserved their epithelial morphology and cellular junctions through the antioxidant activities of grape pomace polyphenols.

7.
Food Funct ; 11(9): 7878-7891, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32812564

ABSTRACT

Endothelial dysfunction is associated with cardiovascular diseases and involves a chronic inflammatory process that together with oxidative stress increases the permeability of the vascular endothelium. The aim of this study was to evaluate the role of red and white wine pomace products (rWPPs and wWPPs) in the maintenance of endothelial integrity in hyperglycemia of EA.hy926 endothelial cells. EA.hy926 endothelial cells exposed to hyperglycemia were treated with the in vitro digested fractions of rWPPs and wWPPs. A Real Time Cellular Analysis (RTCA) system was used to evaluate the endothelial monolayer integrity after INF-γ stimulation of pre-treated endothelial cells with the digested fractions. The changes in cell viability, NO, ROS and NOX4 were recorded and actin cytoskeleton and E-cadherin junctions were evaluated by immunofluorescence. All digested fractions prevent the hyperglycemic actions in the cell viability and NO/ROS balance. The inflammatory mediator INF-γ and hyperglycemia caused a decrease in RTCA adhesion of the EA.hy926 endothelial cell monolayer. Pre-treatment with all digested fractions enhanced the EA.hy926 endothelial monolayer integrity and maintained actin cytoskeleton and E-cadherin junctions. These in vitro studies elucidate that the anti-hyperglycemic and anti-inflammatory actions of wine pomace products involve a decrease in ROS production and the stabilization of junction proteins via modulation of VE-cadherin and actin cytoskeleton suggesting a potential prevention of endothelial damage by these natural products.


Subject(s)
Endothelial Cells/drug effects , Endothelium, Vascular/drug effects , Hydroxybenzoates/pharmacology , Wine/analysis , Actin Cytoskeleton/metabolism , Antigens, CD/metabolism , Cadherins/metabolism , Cell Adhesion/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival , Humans , Hydroxybenzoates/analysis
8.
Food Funct ; 11(2): 1661-1671, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32030390

ABSTRACT

Wine pomace by-products are an important source of phenolic acids with significant health benefits. However, phenolic acid bioavailability in vivo has been little studied and there are few comparative studies on bioavailability between red and white wine pomace and the effect of intake of different doses. The qualitative and quantitative profile of phenolic acid metabolites in plasma and urine samples from Wistar rats was obtained by gas chromatography/mass detection, after oral administration of four doses (50, 100, 150, and 300 mg) of both the red and the white wine pomace products (rWPP and wWPP, respectively). The antioxidant capacity of the plasma samples assessed by both the ABTS and the FRAP levels was also evaluated. The results showed that neither the bioavailability nor the antioxidant capacity in vivo of the rWPP increased at high doses. However, both parameters were dependent on the intake of the wWPP.


Subject(s)
Plant Preparations , Polyphenols/pharmacokinetics , Vitis/chemistry , Wine/analysis , Administration, Oral , Animals , Antioxidants/analysis , Antioxidants/metabolism , Biological Availability , Male , Plant Preparations/administration & dosage , Plant Preparations/chemistry , Plant Preparations/pharmacokinetics , Polyphenols/blood , Polyphenols/chemistry , Polyphenols/urine , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...