Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Article in English | MEDLINE | ID: mdl-38248543

ABSTRACT

Urban population growth in Nigeria may exceed the availability of affordable housing and basic services, resulting in living conditions conducive to vector breeding and heterogeneous malaria transmission. Understanding the link between community-level factors and urban malaria transmission informs targeted interventions. We analyzed Demographic and Health Survey Program cluster-level data, alongside geospatial covariates, to describe variations in malaria prevalence in children under 5 years of age. Univariate and multivariable models explored the relationship between malaria test positivity rates at the cluster level and community-level factors. Generally, malaria test positivity rates in urban areas are low and declining. The factors that best predicted malaria test positivity rates within a multivariable model were post-primary education, wealth quintiles, population density, access to improved housing, child fever treatment-seeking, precipitation, and enhanced vegetation index. Malaria transmission in urban areas will likely be reduced by addressing socioeconomic and environmental factors that promote exposure to disease vectors. Enhanced regional surveillance systems in Nigeria can provide detailed data to further refine our understanding of these factors in relation to malaria transmission.


Subject(s)
Breeding , Malaria , Child , Humans , Child, Preschool , Nigeria/epidemiology , Educational Status , Malaria/epidemiology , Population Growth
2.
BMC Infect Dis ; 23(1): 287, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142984

ABSTRACT

BACKGROUND: Decision-makers impose COVID-19 mitigations based on public health indicators such as reported cases, which are sensitive to fluctuations in supply and demand for diagnostic testing, and hospital admissions, which lag infections by up to two weeks. Imposing mitigations too early has unnecessary economic costs while imposing too late leads to uncontrolled epidemics with unnecessary cases and deaths. Sentinel surveillance of recently-symptomatic individuals in outpatient testing sites may overcome biases and lags in conventional indicators, but the minimal outpatient sentinel surveillance system needed for reliable trend estimation remains unknown. METHODS: We used a stochastic, compartmental transmission model to evaluate the performance of various surveillance indicators at reliably triggering an alarm in response to, but not before, a step increase in transmission of SARS-CoV-2. The surveillance indicators included hospital admissions, hospital occupancy, and sentinel cases with varying levels of sampling effort capturing 5, 10, 20, 50, or 100% of incident mild cases. We tested 3 levels of transmission increase, 3 population sizes, and conditions of either simultaneous transmission increase or lagged increase in the older population. We compared the indicators' performance at triggering alarm soon after, but not prior, to the transmission increase. RESULTS: Compared to surveillance based on hospital admissions, outpatient sentinel surveillance that captured at least 20% of incident mild cases could trigger an alarm 2 to 5 days earlier for a mild increase in transmission and 6 days earlier for a moderate or strong increase. Sentinel surveillance triggered fewer false alarms and averted more deaths per day spent in mitigation. When transmission increase in older populations lagged the increase in younger populations by 14 days, sentinel surveillance extended its lead time over hospital admissions by an additional 2 days. CONCLUSIONS: Sentinel surveillance of mild symptomatic cases can provide more timely and reliable information on changes in transmission to inform decision-makers in an epidemic like COVID-19.


Subject(s)
COVID-19 , Humans , Aged , COVID-19/epidemiology , SARS-CoV-2 , Sentinel Surveillance , Outpatients , Public Health
3.
Malar J ; 22(1): 133, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37095480

ABSTRACT

BACKGROUND: A recent WHO recommendation for perennial malaria chemoprevention (PMC) encourages countries to adapt dose timing and number to local conditions. However, knowledge gaps on the epidemiological impact of PMC and possible combination with the malaria vaccine RTS,S hinder informed policy decisions in countries where malaria burden in young children remains high. METHODS: The EMOD malaria model was used to predict the impact of PMC with and without RTS,S on clinical and severe malaria cases in children under the age of two years (U2). PMC and RTS,S effect sizes were fit to trial data. PMC was simulated with three to seven doses (PMC-3-7) before the age of eighteen months and RTS,S with three doses, shown to be effective at nine months. Simulations were run for transmission intensities of one to 128 infectious bites per person per year, corresponding to incidences of < 1 to 5500 cases per 1000 population U2. Intervention coverage was either set to 80% or based on 2018 household survey data for Southern Nigeria as a sample use case. The protective efficacy (PE) for clinical and severe cases in children U2 was calculated in comparison to no PMC and no RTS,S. RESULTS: The projected impact of PMC or RTS,S was greater at moderate to high transmission than at low or very high transmission. Across the simulated transmission levels, PE estimates of PMC-3 at 80% coverage ranged from 5.7 to 8.8% for clinical, and from 6.1 to 13.6% for severe malaria (PE of RTS,S 10-32% and 24.6-27.5% for clinical and severe malaria, respectively. In children U2, PMC with seven doses nearly averted as many cases as RTS,S, while the combination of both was more impactful than either intervention alone. When operational coverage, as seen in Southern Nigeria, increased to a hypothetical target of 80%, cases were reduced beyond the relative increase in coverage. CONCLUSIONS: PMC can substantially reduce clinical and severe cases in the first two years of life in areas with high malaria burden and perennial transmission. A better understanding of the malaria risk profile by age in early childhood and on feasible coverage by age, is needed for selecting an appropriate PMC schedule in a given setting.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Humans , Child , Child, Preschool , Infant , Malaria/prevention & control , Nigeria , Chemoprevention , Vaccination , Malaria, Falciparum/epidemiology
4.
Malar J ; 22(1): 137, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37101146

ABSTRACT

BACKGROUND: For their 2021-2025 National Malaria Strategic Plan (NMSP), Nigeria's National Malaria Elimination Programme (NMEP), in partnership with the World Health Organization (WHO), developed a targeted approach to intervention deployment at the local government area (LGA) level as part of the High Burden to High Impact response. Mathematical models of malaria transmission were used to predict the impact of proposed intervention strategies on malaria burden. METHODS: An agent-based model of Plasmodium falciparum transmission was used to simulate malaria morbidity and mortality in Nigeria's 774 LGAs under four possible intervention strategies from 2020 to 2030. The scenarios represented the previously implemented plan (business-as-usual), the NMSP at an 80% or higher coverage level and two prioritized plans according to the resources available to Nigeria. LGAs were clustered into 22 epidemiological archetypes using monthly rainfall, temperature suitability index, vector abundance, pre-2010 parasite prevalence, and pre-2010 vector control coverage. Routine incidence data were used to parameterize seasonality in each archetype. Each LGA's baseline malaria transmission intensity was calibrated to parasite prevalence in children under the age of five years measured in the 2010 Malaria Indicator Survey (MIS). Intervention coverage in the 2010-2019 period was obtained from the Demographic and Health Survey, MIS, the NMEP, and post-campaign surveys. RESULTS: Pursuing a business-as-usual strategy was projected to result in a 5% and 9% increase in malaria incidence in 2025 and 2030 compared with 2020, while deaths were projected to remain unchanged by 2030. The greatest intervention impact was associated with the NMSP scenario with 80% or greater coverage of standard interventions coupled with intermittent preventive treatment in infants and extension of seasonal malaria chemoprevention (SMC) to 404 LGAs, compared to 80 LGAs in 2019. The budget-prioritized scenario with SMC expansion to 310 LGAs, high bed net coverage with new formulations, and increase in effective case management rate at the same pace as historical levels was adopted as an adequate alternative for the resources available. CONCLUSIONS: Dynamical models can be applied for relative assessment of the impact of intervention scenarios but improved subnational data collection systems are required to allow increased confidence in predictions at sub-national level.


Subject(s)
Malaria , Child , Infant , Humans , Child, Preschool , Nigeria/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Models, Theoretical , Incidence , Local Government
5.
Malar J ; 22(1): 138, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37101269

ABSTRACT

BACKGROUND: As both mechanistic and geospatial malaria modeling methods become more integrated into malaria policy decisions, there is increasing demand for strategies that combine these two methods. This paper introduces a novel archetypes-based methodology for generating high-resolution intervention impact maps based on mechanistic model simulations. An example configuration of the framework is described and explored. METHODS: First, dimensionality reduction and clustering techniques were applied to rasterized geospatial environmental and mosquito covariates to find archetypal malaria transmission patterns. Next, mechanistic models were run on a representative site from each archetype to assess intervention impact. Finally, these mechanistic results were reprojected onto each pixel to generate full maps of intervention impact. The example configuration used ERA5 and Malaria Atlas Project covariates, singular value decomposition, k-means clustering, and the Institute for Disease Modeling's EMOD model to explore a range of three-year malaria interventions primarily focused on vector control and case management. RESULTS: Rainfall, temperature, and mosquito abundance layers were clustered into ten transmission archetypes with distinct properties. Example intervention impact curves and maps highlighted archetype-specific variation in efficacy of vector control interventions. A sensitivity analysis showed that the procedure for selecting representative sites to simulate worked well in all but one archetype. CONCLUSION: This paper introduces a novel methodology which combines the richness of spatiotemporal mapping with the rigor of mechanistic modeling to create a multi-purpose infrastructure for answering a broad range of important questions in the malaria policy space. It is flexible and adaptable to a range of input covariates, mechanistic models, and mapping strategies and can be adapted to the modelers' setting of choice.


Subject(s)
Malaria , Animals , Humans , Malaria/prevention & control , Mosquito Control/methods
6.
Sci Rep ; 13(1): 321, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36609584

ABSTRACT

Malaria due to the Plasmodium falciparum parasite remains a threat to human health despite eradication efforts and the development of anti-malarial treatments, such as artemisinin combination therapies. Human movement and migration have been linked to the propagation of malaria on national scales, highlighting the need for the incorporation of human movement in modeling efforts. Spatially couped individual-based models have been used to study how anti-malarial resistance evolves and spreads in response to drug policy changes; however, as the spatial scale of the model increases, the challenges associated with modeling of movement also increase. In this paper we discuss the development, calibration, and validation of a movement model in the context of a national-scale, spatial, individual-based model used to study the evolution of drug resistance in the malaria parasite.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Burkina Faso/epidemiology , Malaria/drug therapy , Malaria/epidemiology , Plasmodium falciparum , Drug Therapy, Combination , Drug Resistance , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology
7.
Malar J ; 22(1): 29, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36703147

ABSTRACT

BACKGROUND: Malaria is a leading cause of outpatient visits and deaths among children in Guinea. Despite several mass distribution campaigns of insecticide-treated nets (ITNs) in Guinea, ITN ownership and use remain low. Identifying the underlying factors affecting household ITN ownership and ITN usage among those with access will allow the Guinea National Malaria Control Programme to develop targeted initiatives to improve bed net ownership and usage. METHODS: To understand national and regional drivers of ITN ownership and use, multivariable binary logistic regression models were applied to data from the 2018 Demographic and Health Survey to identify risk factors of household ITN ownership and risk factors of ITN use among individuals with access. Akaike Information Criterion (AIC) was used for model parameter selection. Odds ratios were estimated with corresponding 95% confidence intervals. RESULTS: The proportion of households in Guinea with at least one ITN was 44%, ranging from a low of 25% in Conakry to a high of 54% in Labé. Use of ITNs among those with access was 66.1% nationally, ranging from 35.2% in Labé to 89.7% in N'zérékoré. Risk factors for household ITN ownership were household size, marital status of the household head, education level of the household head, and region. For ITN use among those with access, risk factors were age, wealth quintile, marital status, and region. In the seven regions of Guinea and capital of Conakry, risk factors for household ITN ownership were household size in Boké, Faranah, and Kankan; education level of the household head in Boké, Faranah, and N'zérékoré; age of the household head in Conakry and Labé; children under five in the household in Kankan; and wealth quintile in Mamou. For ITN use among those with access, risk factors were marital status in Conakry, Faranah, Kindia, Labé, Mamou, and N'zérékoré; place of residence in Labé; children under five in the household in Labé; wealth quintile in Mamou; and age in Faranah and N'zérékoré. CONCLUSIONS: This analysis identified national and region-specific factors that affect ownership and use among those with access in Guinea. Future ITN and social-behavioural change campaigns in Guinea may particularly want to target larger households, households without children, and areas with lower perceived risk of malaria if universal coverage and usage are to be achieved for optimal malaria prevention.


Subject(s)
Insecticide-Treated Bednets , Insecticides , Malaria , Child , Humans , Ownership , Guinea , Mosquito Control , Family Characteristics , Malaria/prevention & control
8.
Nat Commun ; 13(1): 5547, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36138039

ABSTRACT

Public health indicators typically used for COVID-19 surveillance can be biased or lag changing community transmission patterns. In this study, we investigate whether sentinel surveillance of recently symptomatic individuals receiving outpatient diagnostic testing for SARS-CoV-2 could accurately assess the instantaneous reproductive number R(t) and provide early warning of changes in transmission. We use data from community-based diagnostic testing sites in the United States city of Chicago. Patients tested at community-based diagnostic testing sites between September 2020 and June 2021, and reporting symptom onset within four days preceding their test, formed the sentinel population. R(t) calculated from sentinel cases agreed well with R(t) from other indicators. Retrospectively, trends in sentinel cases did not precede trends in COVID-19 hospital admissions by any identifiable lead time. In deployment, sentinel surveillance held an operational recency advantage of nine days over hospital admissions. The promising performance of opportunistic sentinel surveillance suggests that deliberately designed outpatient sentinel surveillance would provide robust early warning of increasing transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Chicago/epidemiology , Humans , Outpatients , Retrospective Studies , Sentinel Surveillance , United States/epidemiology
9.
Public Health Rep ; 137(4): 672-678, 2022.
Article in English | MEDLINE | ID: mdl-35510756

ABSTRACT

OBJECTIVES: The Illinois Department of Public Health (IDPH) assessed whether increases in the SARS-CoV-2 test positivity rate among pregnant people at labor and delivery (L&D) could signal increases in SARS-CoV-2 prevalence in the general Illinois population earlier than current state metrics. MATERIALS AND METHODS: Twenty-six birthing hospitals universally testing for SARS-CoV-2 at L&D voluntarily submitted data from June 21, 2020 through January 23, 2021, to IDPH. Hospitals reported the daily number of people who delivered, SARS-CoV-2 tests, and test results as well as symptom status. We compared the test positivity rate at L&D with the test positivity rate of the general population and the number of hospital admissions for COVID-19-like illness by quantifying correlations in trends and identifying a lead time. RESULTS: Of 26 633 reported pregnant people who delivered, 96.8% (n = 25 772) were tested for SARS-CoV-2. The overall test positivity rate was 2.4% (n = 615); 77.7% (n = 478) were asymptomatic. In Chicago, the only region with a sufficient sample size for analysis, the test positivity rate at L&D (peak of 5% on December 7, 2020) was lower and more stable than the test positivity rate of the general population (peak of 14% on November 13, 2020) and lagged hospital admissions for COVID-19-like illness (peak of 118 on November 15, 2020) and the test positivity rate of the general population by about 10 days (Pearson correlation = 0.73 and 0.75, respectively). PRACTICE IMPLICATIONS: Trends in the test positivity rate at L&D did not provide an earlier signal of increases in Illinois's SARS-CoV-2 prevalence than current state metrics did. Nonetheless, the role of universal testing protocols in identifying asymptomatic infection is important for clinical decision making and patient education about infection prevention and control.


Subject(s)
COVID-19 , Asymptomatic Infections , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Female , Hospitalization , Humans , Pregnancy , SARS-CoV-2
10.
Evol Appl ; 15(1): 132-148, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35126652

ABSTRACT

Malaria elimination will be challenging in countries that currently continue to bear high malaria burden. Sex-ratio-distorting gene drives, such as driving-Y, could play a role in an integrated elimination strategy if they can effectively suppress vector populations. Using a spatially explicit, agent-based model of malaria transmission in eight provinces spanning the range of transmission intensities across the Democratic Republic of the Congo, we predict the impact and cost-effectiveness of integrating driving-Y gene drive mosquitoes in malaria elimination strategies that include existing interventions such as insecticide-treated nets and case management of symptomatic malaria. Gene drive mosquitoes could eliminate malaria and were the most cost-effective intervention overall if the drive component was highly effective with at least 95% X-shredder efficiency at relatively low fertility cost, and associated cost of deployment below 7.17 $int per person per year. Suppression gene drive could be a cost-effective supplemental intervention for malaria elimination, but tight constraints on drive effectiveness and cost ceilings may limit its feasibility.

11.
BMC Public Health ; 22(1): 312, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35168585

ABSTRACT

BACKGROUND: Structural racism has driven and continues to drive policies that create the social, economic, and community factors resulting in residential segregation, lack of access to adequate healthcare, and lack of employment opportunities that would allow economic mobility. This results in overall poorer population health for minoritized people. In 2020, Black and Hispanic/Latinx communities throughout the United States, including the state of Illinois, experienced disproportionately high rates of COVID-19 cases and deaths. Public health officials in Illinois implemented targeted programs at state and local levels to increase intervention access and reduce disparities. METHODS: To quantify how disparities in COVID outcomes evolved through the epidemic, data on SARS-CoV-2 diagnostic tests, COVID-19 cases, and COVID-19 deaths were obtained from the Illinois National Electronic Disease Surveillance System for the period from March 1 to December 31, 2020. Relative risks of COVID-19 cases and deaths were calculated for Black and Hispanic/Latinx vs. White residents, stratified by age group and epidemic interval. Deaths attributable to racial/ethnic disparities in incidence and case fatality were estimated with counterfactual simulations. RESULTS: Disparities in case and death rates became less drastic after May 2020, but did not disappear, and were more pronounced at younger ages. From March to May of 2020, the risk of a COVID-19 case for Black and Hispanic/Latinx populations was more than twice that of Whites across all age groups. The relative risk of COVID-19 death reached above 10 for Black and Hispanic/Latinx individuals under 50 years of age compared to age-matched Whites in the early epidemic. In all Illinois counties, relative risk of a COVID-19 case was the same or significantly increased for minoritized populations compared to the White population. 79.3 and 86.7% of disparities in deaths among Black and Hispanic/Latinx populations, respectively, were attributable to differences in age-adjusted incidence compared to White populations rather than differences in case fatality ratios. CONCLUSIONS: Racial and ethnic disparities in the COVID-19 pandemic are products of society, not biology. Considering age and geography in addition to race/ethnicity can help to identify the structural factors driving poorer outcomes for certain groups. Studies and policies aimed at reducing inequalities in disease exposure may reduce disparities in mortality more than those focused on drivers of case fatality.


Subject(s)
COVID-19 , Health Status Disparities , Hispanic or Latino , Humans , Illinois/epidemiology , Pandemics , SARS-CoV-2 , Systemic Racism , United States/epidemiology
12.
PLOS Glob Public Health ; 2(5): e0000308, 2022.
Article in English | MEDLINE | ID: mdl-36962179

ABSTRACT

In non-pharmaceutical management of COVID-19, occupancy of intensive care units (ICU) is often used as an indicator to inform when to intensify mitigation and thus reduce SARS-CoV-2 transmission, strain on ICUs, and deaths. However, ICU occupancy thresholds at which action should be taken are often selected arbitrarily. We propose a quantitative approach using mathematical modeling to identify ICU occupancy thresholds at which mitigation should be triggered to avoid exceeding the ICU capacity available for COVID-19 patients and demonstrate this approach for the United States city of Chicago. We used a stochastic compartmental model to simulate SARS-CoV-2 transmission and disease progression, including critical cases that would require intensive care. We calibrated the model using daily COVID-19 ICU and hospital census data between March and August 2020. We projected various possible ICU occupancy trajectories from September 2020 to May 2021 with two possible levels of transmission increase and uncertainty in core model parameters. The effect of combined mitigation measures was modeled as a decrease in the transmission rate that took effect when projected ICU occupancy reached a specified threshold. We found that mitigation did not immediately eliminate the risk of exceeding ICU capacity. Delaying action by 7 days increased the probability of exceeding ICU capacity by 10-60% and this increase could not be counteracted by stronger mitigation. Even under modest transmission increase, a threshold occupancy no higher than 60% was required when mitigation reduced the reproductive number Rt to just below 1. At higher transmission increase, a threshold of at most 40% was required with mitigation that reduced Rt below 0.75 within the first two weeks after mitigation. Our analysis demonstrates a quantitative approach for the selection of ICU occupancy thresholds that considers parameter uncertainty and compares relevant mitigation and transmission scenarios. An appropriate threshold will depend on the location, number of ICU beds available for COVID-19, available mitigation options, feasible mitigation strengths, and tolerated durations of intensified mitigation.

13.
PLOS Glob Public Health ; 2(2): e0000111, 2022.
Article in English | MEDLINE | ID: mdl-36962300

ABSTRACT

Artemisinin combination therapies (ACTs) are the WHO-recommended first-line therapies for uncomplicated Plasmodium falciparum malaria. The emergence and spread of artemisinin-resistant genotypes is a major global public health concern due to the increased rate of treatment failures that result. This is particularly germane for WHO designated 'high burden to high impact' (HBHI) countries, such as Burkina Faso, where there is increased emphasis on improving guidance, strategy, and coordination of local malaria response in an effort to reduce the prevalence of P. falciparum malaria. To explore how the increased adoption of ACTs may affect the HBHI malaria setting of Burkina Faso, we added spatial structure to a validated individual-based stochastic model of P. falciparum transmission and evaluated the long-term effects of increased ACT use. We explored how de novo emergence of artemisinin-resistant genotypes, such as pfkelch13 580Y, may occur under scenarios in which private-market drugs are eliminated or multiple first-line therapies (MFT) are deployed. We found that elimination of private market drugs would result in lower treatment failures rates (between 11.98% and 12.90%) when compared to the status quo (13.11%). However, scenarios incorporating MFT with equal deployment of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DHA-PPQ) may accelerate near-term drug resistance (580Y frequency ranging between 0.62 to 0.84 in model year 2038) and treatment failure rates (26.69% to 34.00% in 2038), due to early failure and substantially reduced treatment efficacy resulting from piperaquine-resistant genotypes. A rebalanced MFT approach (90% AL, 10% DHA-PPQ) results in approximately equal long-term outcomes to using AL alone but may be difficult to implement in practice.

14.
Malar J ; 20(1): 309, 2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34246274

ABSTRACT

BACKGROUND: Malaria blood-stage infection length and intensity are important drivers of disease and transmission; however, the underlying mechanisms of parasite growth and the host's immune response during infection remain largely unknown. Over the last 30 years, several mechanistic mathematical models of malaria parasite within-host dynamics have been published and used in malaria transmission models. METHODS: Mechanistic within-host models of parasite dynamics were identified through a review of published literature. For a subset of these, model code was reproduced and descriptive statistics compared between the models using fitted data. Through simulation and model analysis, key features of the models were compared, including assumptions on growth, immune response components, variant switching mechanisms, and inter-individual variability. RESULTS: The assessed within-host malaria models generally replicate infection dynamics in malaria-naïve individuals. However, there are substantial differences between the model dynamics after disease onset, and models do not always reproduce late infection parasitaemia data used for calibration of the within host infections. Models have attempted to capture the considerable variability in parasite dynamics between individuals by including stochastic parasite multiplication rates; variant switching dynamics leading to immune escape; variable effects of the host immune responses; or via probabilistic events. For models that capture realistic length of infections, model representations of innate immunity explain early peaks in infection density that cause clinical symptoms, and model representations of antibody immune responses control the length of infection. Models differed in their assumptions concerning variant switching dynamics, reflecting uncertainty in the underlying mechanisms of variant switching revealed by recent clinical data during early infection. Overall, given the scarce availability of the biological evidence there is limited support for complex models. CONCLUSIONS: This study suggests that much of the inter-individual variability observed in clinical malaria infections has traditionally been attributed in models to random variability, rather than mechanistic disease dynamics. Thus, it is proposed that newly developed models should assume simple immune dynamics that minimally capture mechanistic understandings and avoid over-parameterization and large stochasticity which inaccurately represent unknown disease mechanisms.


Subject(s)
Malaria, Falciparum/parasitology , Plasmodium falciparum/physiology , Computer Simulation , Host-Parasite Interactions , Humans , Parasitemia/parasitology
15.
BMC Public Health ; 21(1): 1105, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34107947

ABSTRACT

BACKGROUND: Availability of SARS-CoV-2 testing in the United States (U.S.) has fluctuated through the course of the COVID-19 pandemic, including in the U.S. state of Illinois. Despite substantial ramp-up in test volume, access to SARS-CoV-2 testing remains limited, heterogeneous, and insufficient to control spread. METHODS: We compared SARS-CoV-2 testing rates across geographic regions, over time, and by demographic characteristics (i.e., age and racial/ethnic groups) in Illinois during March through December 2020. We compared age-matched case fatality ratios and infection fatality ratios through time to estimate the fraction of SARS-CoV-2 infections that have been detected through diagnostic testing. RESULTS: By the end of 2020, initial geographic differences in testing rates had closed substantially. Case fatality ratios were higher in non-Hispanic Black and Hispanic/Latino populations in Illinois relative to non-Hispanic White populations, suggesting that tests were insufficient to accurately capture the true burden of COVID-19 disease in the minority populations during the initial epidemic wave. While testing disparities decreased during 2020, Hispanic/Latino populations consistently remained the least tested at 1.87 tests per 1000 population per day compared with 2.58 and 2.87 for non-Hispanic Black and non-Hispanic White populations, respectively, at the end of 2020. Despite a large expansion in testing since the beginning of the first wave of the epidemic, we estimated that over half (50-80%) of all SARS-CoV-2 infections were not detected by diagnostic testing and continued to evade surveillance. CONCLUSIONS: Systematic methods for identifying relatively under-tested geographic regions and demographic groups may enable policymakers to regularly monitor and evaluate the shifting landscape of diagnostic testing, allowing officials to prioritize allocation of testing resources to reduce disparities in COVID-19 burden and eventually reduce SARS-CoV-2 transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Illinois/epidemiology , Pandemics , United States/epidemiology
16.
medRxiv ; 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33907762

ABSTRACT

Background: Availability of SARS-CoV-2 testing in the United States (U.S.) has fluctuated through the course of the COVID-19 pandemic, including in the U.S. state of Illinois. Despite substantial ramp-up in test volume, access to SARS-CoV-2 testing remains limited, heterogeneous, and insufficient to control spread. Methods: We compared SARS-CoV-2 testing rates across geographic regions, over time, and by demographic characteristics (i.e., age and racial/ethnic groups) in Illinois during March through December 2020. We compared age-matched case fatality ratios and infection fatality ratios through time to estimate the fraction of SARS-CoV-2 infections that have been detected through diagnostic testing. Results: By the end of 2020, initial geographic differences in testing rates had closed substantially. Case fatality ratios were higher in non-Hispanic Black and Hispanic/Latino populations in Illinois relative to non-Hispanic White populations, suggesting that tests were insufficient to accurately capture the true burden of COVID-19 disease in the minority populations during the initial epidemic wave. While testing disparities decreased during 2020, Hispanic/Latino populations consistently remained the least tested at 1.87 tests per 1000 population per day compared with 2.58 and 2.87 for non-Hispanic Black and non-Hispanic White populations, respectively, at the end of 2020. Despite a large expansion in testing since the beginning of the first wave of the epidemic, we estimated that over half (50-80%) of all SARS-CoV-2 infections were not detected by diagnostic testing and continued to evade surveillance. Conclusions: Systematic methods for identifying relatively under-tested geographic regions and demographic groups may enable policymakers to regularly monitor and evaluate the shifting landscape of diagnostic testing, allowing officials to prioritize allocation of testing resources to reduce disparities in COVID-19 burden and eventually reduce SARS-CoV-2 transmission.

17.
Malar J ; 20(1): 122, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33648499

ABSTRACT

In malaria-endemic countries, prioritizing intervention deployment to areas that need the most attention is crucial to ensure continued progress. Global and national policy makers increasingly rely on epidemiological data and mathematical modelling to help optimize health decisions at the sub-national level. The Demographic and Health Surveys (DHS) Program is a critical data source for understanding subnational malaria prevalence and intervention coverage, which are used for parameterizing country-specific models of malaria transmission. However, data to estimate indicators at finer resolutions are limited, and surveys questions have a narrow scope. Examples from the Nigeria DHS are used to highlight gaps in the current survey design. Proposals are then made for additional questions and expansions to the DHS and Malaria Indicator Survey sampling strategy that would advance the data analyses and modelled estimates that inform national policy recommendations. Collaboration between the DHS Program, national malaria control programmes, the malaria modelling community, and funders is needed to address the highlighted data challenges.


Subject(s)
Communicable Disease Control/organization & administration , Health Policy , Malaria/prevention & control , Nigeria , Surveys and Questionnaires
18.
Nature ; 589(7840): 82-87, 2021 01.
Article in English | MEDLINE | ID: mdl-33171481

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic markedly changed human mobility patterns, necessitating epidemiological models that can capture the effects of these changes in mobility on the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1. Here we introduce a metapopulation susceptible-exposed-infectious-removed (SEIR) model that integrates fine-grained, dynamic mobility networks to simulate the spread of SARS-CoV-2 in ten of the largest US metropolitan areas. Our mobility networks are derived from mobile phone data and map the hourly movements of 98 million people from neighbourhoods (or census block groups) to points of interest such as restaurants and religious establishments, connecting 56,945 census block groups to 552,758 points of interest with 5.4 billion hourly edges. We show that by integrating these networks, a relatively simple SEIR model can accurately fit the real case trajectory, despite substantial changes in the behaviour of the population over time. Our model predicts that a small minority of 'superspreader' points of interest account for a large majority of the infections, and that restricting the maximum occupancy at each point of interest is more effective than uniformly reducing mobility. Our model also correctly predicts higher infection rates among disadvantaged racial and socioeconomic groups2-8 solely as the result of differences in mobility: we find that disadvantaged groups have not been able to reduce their mobility as sharply, and that the points of interest that they visit are more crowded and are therefore associated with higher risk. By capturing who is infected at which locations, our model supports detailed analyses that can inform more-effective and equitable policy responses to COVID-19.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Computer Simulation , Locomotion , Physical Distancing , Racial Groups/statistics & numerical data , Socioeconomic Factors , COVID-19/transmission , Cell Phone/statistics & numerical data , Data Analysis , Humans , Mobile Applications/statistics & numerical data , Religion , Restaurants/organization & administration , Risk Assessment , Time Factors
19.
Infect Dis Model ; 6: 133-147, 2021.
Article in English | MEDLINE | ID: mdl-33163738

ABSTRACT

We demonstrate the ability of statistical data assimilation (SDA) to identify the measurements required for accurate state and parameter estimation in an epidemiological model for the novel coronavirus disease COVID-19. Our context is an effort to inform policy regarding social behavior, to mitigate strain on hospital capacity. The model unknowns are taken to be: the time-varying transmission rate, the fraction of exposed cases that require hospitalization, and the time-varying detection probabilities of new asymptomatic and symptomatic cases. In simulations, we obtain estimates of undetected (that is, unmeasured) infectious populations, by measuring the detected cases together with the recovered and dead - and without assumed knowledge of the detection rates. Given a noiseless measurement of the recovered population, excellent estimates of all quantities are obtained using a temporal baseline of 101 days, with the exception of the time-varying transmission rate at times prior to the implementation of social distancing. With low noise added to the recovered population, accurate state estimates require a lengthening of the temporal baseline of measurements. Estimates of all parameters are sensitive to the contamination, highlighting the need for accurate and uniform methods of reporting. The aim of this paper is to exemplify the power of SDA to determine what properties of measurements will yield estimates of unknown parameters to a desired precision, in a model with the complexity required to capture important features of the COVID-19 pandemic.

20.
PLoS Comput Biol ; 16(8): e1008121, 2020 08.
Article in English | MEDLINE | ID: mdl-32797077

ABSTRACT

Vector control has been a key component in the fight against malaria for decades, and chemical insecticides are critical to the success of vector control programs worldwide. However, increasing resistance to insecticides threatens to undermine these efforts. Understanding the evolution and propagation of resistance is thus imperative to mitigating loss of intervention effectiveness. Additionally, accelerated research and development of new tools that can be deployed alongside existing vector control strategies is key to eradicating malaria in the near future. Methods such as gene drives that aim to genetically modify large mosquito populations in the wild to either render them refractory to malaria or impair their reproduction may prove invaluable tools. Mathematical models of gene flow in populations, which is the transfer of genetic information from one population to another through migration, can offer invaluable insight into the behavior and potential impact of gene drives as well as the spread of insecticide resistance in the wild. Here, we present the first multi-locus, agent-based model of vector genetics that accounts for mutations and a many-to-many mapping cardinality of genotypes to phenotypes to investigate gene flow, and the propagation of gene drives in Anopheline populations. This model is embedded within a large scale individual-based model of malaria transmission representative of a high burden, high transmission setting characteristic of the Sahel. Results are presented for the selection of insecticide-resistant vectors and the spread of resistance through repeated deployment of insecticide treated nets (ITNs), in addition to scenarios where gene drives act in concert with existing vector control tools such as ITNs. The roles of seasonality, spatial distribution of vector habitat and feed sites, and existing vector control in propagating alleles that confer phenotypic traits via gene drives that result in reduced transmission are explored. The ability to model a spectrum of vector species with different genotypes and phenotypes in the context of malaria transmission allows us to test deployment strategies for existing interventions that reduce the deleterious effects of resistance and allows exploration of the impact of new tools being proposed or developed.


Subject(s)
Anopheles/genetics , Gene Drive Technology/methods , Insecticide Resistance/genetics , Malaria , Mosquito Vectors/genetics , Animals , Genetic Fitness , Humans , Malaria/prevention & control , Malaria/transmission , Systems Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...