Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 308: 119678, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35753543

ABSTRACT

Lichens serve as important bioindicators of air pollution in cities. Here, we studied the diversity of epiphytic lichens in the urban area of Munich, Bavaria, southern Germany, to determine which factors influence species composition and diversity. Lichen diversity was quantified in altogether 18 plots and within each, five deciduous trees were investigated belonging to on average three tree species (range 1-5). Of the 18 plots, two were sampled in control areas in remote areas of southern Germany. For each lichen species, frequency of occurrence was determined in 10 quadrats of 100 cm2 on the tree trunk. Moreover, the cover percentage of bryophytes was determined and used as a variable to represent potential biotic competition. We related our diversity data (species richness, Shannon index, evenness, abundance) to various environmental variables including tree traits, i.e. bark pH levels and species affiliation and air pollution data, i.e. NO2 and SO2 concentrations measured in the study plots. The SO2 levels measured in our study were generally very low, while NO2 levels were rather high in some plots. We found that the species composition of the epiphytic lichen communities was driven mainly by NO2 pollution levels and all of the most common species in our study were nitrophilous lichens. Low NO2 but high SO2 values were associated with high lichen evenness. Tree-level lichen diversity and abundance were mainly determined by tree traits, not air pollution. These results confirm that ongoing NO2 air pollution within cities is a major threat to lichen diversity, with non-nitrophilous lichens likely experiencing the greatest risk of local extinctions in urban areas in the future. Our study moreover highlights the importance of large urban green spaces for species diversity. City planners need to include large green spaces when designing urban areas, both to improve biodiversity and to promote human health and wellbeing.


Subject(s)
Air Pollutants , Air Pollution , Lichens , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Humans , Nitrogen Dioxide , Trees
2.
J Fungi (Basel) ; 8(5)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35628705

ABSTRACT

Fungi involved in lichen symbioses produce a large array of secondary metabolites that are often diagnostic in the taxonomic delimitation of lichens. The most common lichen secondary metabolites-polyketides-are synthesized by polyketide synthases, particularly by Type I PKS (TI-PKS). Here, we present a comparative genomic analysis of the TI-PKS gene content of 23 lichen-forming fungal genomes from Ascomycota, including the de novo sequenced genome of Bacidia rubella. Firstly, we identify a putative atranorin cluster in B. rubella. Secondly, we provide an overview of TI-PKS gene diversity in lichen-forming fungi, and the most comprehensive Type I PKS phylogeny of lichen-forming fungi to date, including 624 sequences. We reveal a high number of biosynthetic gene clusters and examine their domain composition in the context of previously characterized genes, confirming that PKS genes outnumber known secondary substances. Moreover, two novel groups of reducing PKSs were identified. Although many PKSs remain without functional assignments, our findings highlight that genes from lichen-forming fungi represent an untapped source of novel polyketide compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...