Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(20): 9175-9183, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38722294

ABSTRACT

A luminescent zero-dimensional organic-inorganic hybrid indium halide (TUH)6[In1-xSbxBr6]Br3 (TU = thiourea, 0 ≤ x ≤ 0.0998) was synthesized via the solvothermal method. In structures, resolved by single-crystal X-ray diffraction, isolated distorted [InBr6]3- and [SbBr6]3- octahedra are linked to organic TUH+ cations by intermolecular N-H···Br and N-H···S hydrogen bonds. The crystals were characterized by elemental analysis, TG-DSC, powder X-ray diffraction, FTIR analysis, and steady-state absorption and photoluminescence spectroscopy. (TUH)6[In1-xSbxBr6]Br3 exhibits a broadband yellow-orange emission centered at 595-602 nm with a half-width of 141-149 nm (0.48-0.52 eV) and a large Stokes shift of 232-238 nm (1.33-1.35 eV). This emission can be attributed to the self-trapped exciton emission of triplet states of the octahedral anion [SbBr6]3- or [InBr6]3-. Two possible emission mechanisms were discussed. Doping with Sb3+ leads to a significant increase in photoluminescence quantum yield from 25.7 at x = 0 to 48.4% at x = 0.0065, when excited at 365 nm, indicating the potential use of (TUH)6[In1-xSbxBr6]Br3 compounds in the field of photonics.

2.
Micromachines (Basel) ; 12(12)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34945416

ABSTRACT

Physical mechanisms underlying the multilevel resistive tuning over seven orders of magnitude in structures based on TiO2/Al2O3 bilayers, sandwiched between platinum electrodes, are responsible for the nonlinear dependence of the conductivity of intermediate resistance states on the writing voltage. To improve the linearity of the electric-field resistance tuning, we apply a contact engineering approach. For this purpose, platinum top electrodes were replaced with aluminum and copper ones to induce the oxygen-related electrochemical reactions at the interface with the Al2O3 switching layer of the structures. Based on experimental results, it was found that electrode material substitution provokes modification of the physical mechanism behind the resistive switching in TiO2/Al2O3 bilayers. In the case of aluminum electrodes, a memory window has been narrowed down to three orders of magnitude, while the linearity of resistance tuning was improved. For copper electrodes, a combination of effects related to metal ion diffusion with oxygen vacancies driven resistive switching was responsible for a rapid relaxation of intermediate resistance states in TiO2/Al2O3 bilayers.

3.
Int J Mol Sci ; 22(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34638798

ABSTRACT

Detecting the folding/unfolding pathways of biological macromolecules is one of the urgent problems of molecular biophysics. The unfolding of bacterial luciferase from Vibrio harveyi is well-studied, unlike that of Photobacterium leiognathi, despite the fact that both of them are actively used as a reporter system. The aim of this study was to compare the conformational transitions of these luciferases from two different protein subfamilies during equilibrium unfolding with urea. Intrinsic steady-state and time-resolved fluorescence spectra and circular dichroism spectra were used to determine the stages of the protein unfolding. Molecular dynamics methods were applied to find the differences in the surroundings of tryptophans in both luciferases. We found that the unfolding pathway is the same for the studied luciferases. However, the results obtained indicate more stable tertiary and secondary structures of P. leiognathi luciferase as compared to enzyme from V. harveyi during the last stage of denaturation, including the unfolding of individual subunits. The distinctions in fluorescence of the two proteins are associated with differences in the structure of the C-terminal domain of α-subunits, which causes different quenching of tryptophan emissions. The time-resolved fluorescence technique proved to be a more effective method for studying protein unfolding than steady-state methods.


Subject(s)
Luciferases, Bacterial/chemistry , Molecular Dynamics Simulation , Photobacterium/chemistry , Vibrio/chemistry , Protein Domains , Spectrometry, Fluorescence
4.
Nanomaterials (Basel) ; 11(9)2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34578686

ABSTRACT

Fe3O4@SiO2 core-shell nanoparticles (NPs) were synthesized with the co-precipitation method and functionalized with NH2 amino-groups. The nanoparticles were characterized by X-ray, FT-IR spectroscopy, transmission electron microscopy, selected area electron diffraction, and vibrating sample magnetometry. The magnetic core of all the nanoparticles was shown to be nanocrystalline with the crystal parameters corresponding only to the Fe3O4 phase covered with a homogeneous amorphous silica (SiO2) shell of about 6 nm in thickness. The FT-IR spectra confirmed the appearance of chemical bonds at amino functionalization. The magnetic measurements revealed unusually high saturation magnetization of the initial Fe3O4 nanoparticles, which was presumably associated with the deviations in the Fe ion distribution between the tetrahedral and octahedral positions in the nanocrystals as compared to the bulk stoichiometric magnetite. The fluorescent spectrum of eosin Y-doped NPs dispersed in water solution was obtained and a red shift and line broadening (in comparison with the dye molecules being free in water) were revealed and explained. Most attention was paid to the adsorption properties of the nanoparticles with respect to three dyes: methylene blue, Congo red, and eosin Y. The kinetic data showed that the adsorption processes were associated with the pseudo-second order mechanism for all three dyes. The equilibrium data were more compatible with the Langmuir isotherm and the maximum adsorption capacity was reached for Congo red.

5.
Materials (Basel) ; 13(9)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32354077

ABSTRACT

The development of methods to synthesize and study the properties of dark titania is of the utmost interest due to prospects for its use, primarily in photocatalysis when excited by visible light. In this work, the dark titania powder was prepared by pulsed laser ablation (Nd:YAG laser, 1064 nm, 7 ns) in water and dried in air. To study the changes occurring in the material, the thermal treatment was applied. The structure, composition, and properties of the obtained powders were studied using transmission electron microscopy, low-temperature N2 adsorption/desorption, X-ray diffraction, thermogravimetry/differential scanning calorimetry, X-ray photoelectron, Raman and UV-vis spectroscopies, and photoluminescence methods. The processes occurring in the initial material upon heating were studied. The electronic structure of the semiconductor materials was investigated, and the nature of the defects providing the visible light absorption was revealed. The photocatalytic and antibacterial activities of the materials obtained were also studied. Dark titania obtained via laser ablation in liquid was found to exhibit catalytic activity in the phenol photodegradation process under visible light (> 420 nm) and showed antibacterial activity against Staphylococcus aureus and bacteriostatic effect towards Escherichia coli.

6.
Phys Chem Chem Phys ; 21(9): 4831-4838, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30775747

ABSTRACT

The photoluminescence (PL) properties of composites obtained by embedding green-emitting semiconductor nanocrystals (NCs) of two different types (thiol-capped CdTe and CdSe/ZnS) into chitosan-based biopolymer particles were investigated. The synthesis of self-assembled particles from oppositely charged polysaccharides involved a preliminary electrostatic binding of positively charged chitosan chains by negatively charged functional groups of NC stabilizing ligands. The amount of NCs and the acidity of the solution were found to be important parameters influencing the PL. The PL properties were mainly discussed in terms of the colloidal stability of the particles and changes in energy gap of NCs. Generally, the obtained biocompatible composites with NCs randomly distributed within a biopolymer particle demonstrated a higher PL resistance to the solution acidity that expands the applicability range of thiol-capped NCs.

7.
PLoS One ; 14(1): e0210361, 2019.
Article in English | MEDLINE | ID: mdl-30640946

ABSTRACT

Is it possible to compare the physicochemical properties of a wild-type protein and its mutant form under the same conditions? Provided the mutation has destabilized the protein, it may be more correct to compare the mutant protein under native conditions to the wild-type protein destabilized with a small amount of the denaturant. In general, is it appropriate to compare the properties of proteins destabilized by different treatments: mutations, pH, temperature, and denaturants like urea? These issues have compelled us to search for methods and ways of presentation of experimental results that would allow a comparison of mutant forms of proteins under different conditions and lead to conclusions on the effect of mutations on the protein folding/unfolding pathway. We have studied equilibrium unfolding of wild-type bovine carbonic anhydrase II (BCA II) and its six mutant forms using different urea concentrations. BCA II has been already studied in detail and is a good model object for validating new techniques. In this case, time-resolved fluorescence spectroscopy was chosen as the basic research method. The main features of this experimental method allowed us to compare different stages of unfolding of studied proteins and prove experimentally that a single substitution of the amino acid in three mutant forms of BCA II affected the native state of the protein but did not change its unfolding pathway. On the contrary, the inserted disulfide bridge in three other mutant forms of BCA II affected the protein unfolding pathway. An important result of this research is that we have validated the new approach allowing investigation of the effect of mutations on the folding of globular proteins, because in this way it is possible to compare proteins in the same structural states rather than under identical conditions.


Subject(s)
Carbonic Anhydrase II/chemistry , Carbonic Anhydrase II/genetics , Mutation , Protein Folding , Amino Acid Substitution , Animals , Cattle , Disulfides/chemistry , Models, Molecular , Protein Conformation , Protein Denaturation , Protein Stability , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Spectrometry, Fluorescence , Tryptophan/chemistry , Unfolded Protein Response/genetics , Urea
8.
Methods Appl Fluoresc ; 6(1): 015006, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29119952

ABSTRACT

In most cases, intermediate states of multistage folding proteins are not 'visible' under equilibrium conditions but are revealed in kinetic experiments. Time-resolved fluorescence spectroscopy was used in equilibrium denaturation studies. The technique allows for detecting changes in the conformation and environment of tryptophan residues in different structural elements of carbonic anhydrase II which in its turn has made it possible to study the intermediate states of carbonic anhydrase II under equilibrium conditions. The results of equilibrium and kinetic experiments using wild-type bovine carbonic anhydrase II and its mutant form with the substitution of leucine for alanine at position 139 (L139A) were compared. The obtained lifetime components of intrinsic tryptophan fluorescence allowed for revealing that, the same as in kinetic experiments, under equilibrium conditions the unfolding of carbonic anhydrase II ensues through formation of intermediate states.

9.
J Phys Chem B ; 121(23): 5876-5881, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28564541

ABSTRACT

The employment of colloid quantum dots in a number of applications is limited by their instability under light irradiation. Additional methods of photostability enhancement of UV+visible-irradiated TGA-stabilized CdTe quantum dots are investigated. Photostability enhancement was observed via either addition of sodium sulphite in the role of chemical oxygen absorber or addition of 1% gelatin, or, finally, by additional stabilization by bovine serum albumine (BSA). The latter method is the most promising, since it not only enhances the quantum dots' photostability but also makes them more biocompatible and extends the possibilities of their biological applications.

10.
Opt Express ; 24(10): 11145-50, 2016 May 16.
Article in English | MEDLINE | ID: mdl-27409936

ABSTRACT

Self-assembly of colloidal semiconductor quantum dots controlled solely by laser-induced interaction is demonstrated for the first time. Pairs of CdTe nanoparticles are formed under irradiation with nanosecond pulses at wavelengths 555 or 560 nm. Formation of pairs is justified by corresponding changes of absorption spectra. Conditions of the experiment are in excellent agreement with those predicted by the theory of laser-induced dipole-dipole interaction of QDs. The fraction of QDs assembled into pairs is up to 47%.

11.
Chemphyschem ; 16(18): 3997-4003, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26436609

ABSTRACT

Biocompatible chitosan-based polyelectrolyte complexes (PECs) doped with xanthene dyes (fluorescein, eosin Y, erythrosin B, rhodamine 6G) were synthesized and characterized by scanning electron microscopy, dynamic light scattering, zeta potential measurements, and absorption and luminescence (including polarized, time-resolved, and phosphorescence) spectroscopy. The results are discussed in terms of the mechanism and rigidity of dye-PEC binding, the heavy-atom effect in dyes and PEC stability. Eosin Y is found to be the optimal dopant, providing both a high dye content in PECs and a high quantum yield of fluorescence.


Subject(s)
Chitosan/chemistry , Coloring Agents/chemistry , Electrolytes/chemistry , Xanthenes/chemistry , Microscopy, Electron, Scanning , Spectrometry, Fluorescence
12.
Anal Bioanal Chem ; 400(2): 343-51, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21336798

ABSTRACT

The paper investigates an application of luminescent bioassays to monitor the toxicity of organic halides. Effects of xanthene dyes (fluorescein, eosin Y, and erythrosin B), used as model compounds, on bioluminescent reactions of firefly Luciola mingrelica, marine bacteria Photobacterium leiognathi, and hydroid polyp Obelia longissima were studied. Dependence of bioluminescence quenching constants on the atomic weight of halogen substituents in dye molecules was demonstrated. Bacterial bioluminescence was shown to be most sensitive to heavy halogen atoms involved in molecular structure; hence, it is suitable for construction of sensors to monitor toxicity of halogenated compounds. Mechanisms of bioluminescence quenching--energy transfer processes, collisional interactions, and enzyme-dye binding--were considered. Changes of bioluminescence (BL) spectra in the presence of the dyes were analyzed. Interactions of the dyes with enzymes were studied using fluorescence characteristics of the dyes in steady-state and time-resolved experiments. The dependences of fluorescence anisotropy of enzyme-bound dyes, the average fluorescence lifetime, and the number of exponential components in fluorescence decay on the atomic weight of halogen substituents were demonstrated. The results are discussed in terms of "dark effect of heavy halogen atom" in the process of enzyme-dye binding; hydrophobic interactions were assumed to be responsible for the effect.


Subject(s)
Biological Assay/methods , Fluorescein/pharmacology , Fluorescent Dyes/pharmacology , Luminescent Measurements/methods , Animals , Cnidaria/chemistry , Cnidaria/drug effects , Fireflies/chemistry , Fireflies/drug effects , Fluorescein/chemistry , Fluorescent Dyes/chemistry , Halogens/chemistry , Halogens/pharmacology , Hydrophobic and Hydrophilic Interactions , Kinetics , Molecular Structure , Photobacterium/chemistry , Photobacterium/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...