Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 30(25): 255705, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-30790778

ABSTRACT

In recent decades the applications of nanotechnology in the biomedical field have attracted a lot of attention. Magnetic and gold nanoparticles (MNPs and GNPs) are now of interest as selective tools for tumour treatment, due to their unique properties and biocompatibility. In this paper, superparamagnetic iron oxide nanoparticles (MNPs) decorated with gold nanoparticles (GNPs) have been prepared by means of an innovative synthesis process using tannic acid as the reducing agent. The as-obtained nanoplatforms were characterized in terms of size, morphology, structure, composition, magnetic response and plasmonic properties. The results revealed that hybrid nanoplatforms (magnetoplasmonic nanoparticles, MPNPs) composed of a magnetic core and an external GNP decoration, acting in synergy, have been developed. Biological tests were also performed on both healthy cells and cancer cells exposed to different nanoparticle concentrations, upon laser irradiation. GNPs grafted onto the surface of MNPs revealed the ability to convert the received light into thermal energy, which was selective in its detrimental effect on cancer cells.


Subject(s)
Gold/chemistry , Magnetite Nanoparticles/chemistry , Phototherapy/instrumentation , Apoptosis/drug effects , Cell Line , Cell Line, Tumor , Gold/pharmacology , Humans , Spectrum Analysis, Raman , Tannins
2.
Sci Rep ; 7(1): 13029, 2017 10 12.
Article in English | MEDLINE | ID: mdl-29026182

ABSTRACT

One of the open issues concerning iron-based superconductors is whether the s± wave model is able to account for the overall effects of impurity scattering, including the low rate of decrease of the critical temperature with the impurity concentration. Here we investigate Ba1-x K x Fe2As2 crystals where disorder is introduced by Au-ion irradiation. Critical temperature, T c , and London penetration depth, λ L , were measured by a microwave resonator technique, for different values of the irradiation fluence. We compared experimental data with calculations made on the basis of the three-band Eliashberg equations, suitably accounting for the impurity scattering. We show that this approach is able to explain in a consistent way the effects of disorder both on T c and on λ L (T), within the s± wave model. In particular, a change of curvature in the low-temperature λ L (T) curves for the most irradiated crystals is fairly well reproduced.

SELECTION OF CITATIONS
SEARCH DETAIL
...