Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 784, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35145074

ABSTRACT

Type 2 diabetes is associated with insulin resistance, impaired pancreatic ß-cell insulin secretion, and nonalcoholic fatty liver disease. Tissue-specific SWELL1 ablation impairs insulin signaling in adipose, skeletal muscle, and endothelium, and impairs ß-cell insulin secretion and glycemic control. Here, we show that ICl,SWELL and SWELL1 protein are reduced in adipose and ß-cells in murine and human diabetes. Combining cryo-electron microscopy, molecular docking, medicinal chemistry, and functional studies, we define a structure activity relationship to rationally-design active derivatives of a SWELL1 channel inhibitor (DCPIB/SN-401), that bind the SWELL1 hexameric complex, restore SWELL1 protein, plasma membrane trafficking, signaling, glycemic control and islet insulin secretion via SWELL1-dependent mechanisms. In vivo, SN-401 restores glycemic control, reduces hepatic steatosis/injury, improves insulin-sensitivity and insulin secretion in murine diabetes. These findings demonstrate that SWELL1 channel modulators improve SWELL1-dependent systemic metabolism in Type 2 diabetes, representing a first-in-class therapeutic approach for diabetes and nonalcoholic fatty liver disease.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Glycemic Control/methods , Membrane Proteins/genetics , Membrane Proteins/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Adipose Tissue/metabolism , Animals , Cryoelectron Microscopy , Diabetes Mellitus, Experimental/metabolism , Glucose/metabolism , Insulin/metabolism , Insulin Resistance , Insulin Secretion , Insulin-Secreting Cells/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Signal Transduction , Transcriptome
2.
Cell Host Microbe ; 26(2): 203-216.e6, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31415753

ABSTRACT

The HIV-1 capsid is an ordered protein shell that houses the viral genome during early infection. Its expansive surface consists of an ordered and interfacing array of capsid protein hexamers and pentamers that are recognized by numerous cellular proteins. Many of these proteins recognize specific, assembled capsid interfaces not present in unassembled capsid subunits. We used protein-engineering tools to capture diverse capsid assembly intermediates. We built a repertoire of capsid assemblies (ranging from two to 42 capsid protein molecules) that recreate the various surfaces in infectious capsids. These assemblies reveal unique capsid-targeting mechanisms for each of the anti-HIV factors, TRIMCyp, MxB, and TRIM5α, linked to inhibition of virus uncoating and nuclear entry, as well as the HIV-1 cofactor FEZ1 that facilitates virus intracellular trafficking. This capsid assembly repertoire enables elucidation of capsid recognition modes by known capsid-interacting factors, identification of new capsid-interacting factors, and potentially, development of capsid-targeting therapeutics.


Subject(s)
Capsid Proteins/chemistry , Capsid Proteins/ultrastructure , Capsid/chemistry , Capsid/ultrastructure , HIV-1/physiology , HIV-1/ultrastructure , Animals , Anti-HIV Agents/pharmacology , Antiviral Restriction Factors , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Carrier Proteins/metabolism , HIV-1/genetics , Humans , Macaca fascicularis , Macaca mulatta , Myxovirus Resistance Proteins , Protein Binding , Protein Domains , Protein Engineering , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins , Tripartite Motif Proteins , Ubiquitin-Protein Ligases
SELECTION OF CITATIONS
SEARCH DETAIL
...