Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(1): e0244422, 2021.
Article in English | MEDLINE | ID: mdl-33439902

ABSTRACT

Here we adapt and evaluate a full-face snorkel mask for use as personal protective equipment (PPE) for health care workers, who lack appropriate alternatives during the COVID-19 crisis in the spring of 2020. The design (referred to as Pneumask) consists of a custom snorkel-specific adapter that couples the snorkel-port of the mask to a rated filter (either a medical-grade ventilator inline filter or an industrial filter). This design has been tested for the sealing capability of the mask, filter performance, CO2 buildup and clinical usability. These tests found the Pneumask capable of forming a seal that exceeds the standards required for half-face respirators or N95 respirators. Filter testing indicates a range of options with varying performance depending on the quality of filter selected, but with typical filter performance exceeding or comparable to the N95 standard. CO2 buildup was found to be roughly equivalent to levels found in half-face elastomeric respirators in literature. Clinical usability tests indicate sufficient visibility and, while speaking is somewhat muffled, this can be addressed via amplification (Bluetooth voice relay to cell phone speakers through an app) in noisy environments. We present guidance on the assembly, usage (donning and doffing) and decontamination protocols. The benefit of the Pneumask as PPE is that it is reusable for longer periods than typical disposable N95 respirators, as the snorkel mask can withstand rigorous decontamination protocols (that are standard to regular elastomeric respirators). With the dire worldwide shortage of PPE for medical personnel, our conclusions on the performance and efficacy of Pneumask as an N95-alternative technology are cautiously optimistic.


Subject(s)
Masks , Personal Protective Equipment , Personnel, Hospital , COVID-19/epidemiology , COVID-19/prevention & control , Carbon Dioxide/chemistry , Equipment Design , Exhalation , Filtration , Humans , Models, Theoretical
2.
ChemMedChem ; 10(4): 688-714, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25735812

ABSTRACT

Sphingosine-1-phosphate (S1P) receptor agonists have shown promise as therapeutic agents for multiple sclerosis (MS) due to their regulatory roles within the immune, central nervous system, and cardiovascular system. Here, the design and optimization of novel [1,2,4]oxadiazole derivatives as selective S1P receptor agonists are described. The structure-activity relationship exploration was carried out on the three dominant segments of the series: modification of the polar head group (P), replacement of the oxadiazole linker (L) with different five-membered heterocycles, and the use of diverse 2,2'-disubstituted biphenyl moieties as the hydrophobic tail (H). All three segments have a significant impact on potency, S1P receptor subtype selectivity, physicochemical properties, and in vitro absorption, distribution, metabolism, excretion and toxicity (ADMET) profile of the compounds. From these optimization studies, a selective S1P1 agonist, N-methyl-N-(4-{5-[2-methyl-2'-(trifluoromethyl)biphenyl-4-yl]-1,2,4-oxadiazol-3-yl}benzyl)glycine (45), and a dual S1P1,5 agonist, N-methyl-N-(3-{5-[2'-methyl-2-(trifluoromethyl)biphenyl-4-yl]-1,2,4-oxadiazol-3-yl}benzyl)glycine (49), emerged as frontrunners. These compounds distribute predominantly in lymph nodes and brain over plasma and induce long lasting decreases in lymphocyte count after oral administration. When evaluated head-to-head in an experimental autoimmune encephalomyelitis mouse model, together with the marketed drug fingolimod, a pan-S1P receptor agonist, S1P1,5 agonist 49 demonstrated comparable efficacy while S1P1 -selective agonist 45 was less potent. Compound 49 is not a prodrug, and its improved property profile should translate into a safer treatment of relapsing forms of MS.


Subject(s)
Drug Design , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Immunologic Factors/chemistry , Immunologic Factors/therapeutic use , Oxadiazoles/chemistry , Oxadiazoles/therapeutic use , Receptors, Lysosphingolipid/agonists , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Humans , Immunologic Factors/pharmacokinetics , Mice , Mice, Inbred C57BL , Models, Molecular , Multiple Sclerosis/drug therapy , Oxadiazoles/pharmacokinetics , Receptors, Lysosphingolipid/immunology , Structure-Activity Relationship
3.
J Biol Chem ; 284(17): 11385-95, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19233845

ABSTRACT

We describe novel, cell-permeable, and bioavailable salicylic acid derivatives that are potent and selective inhibitors of GLEPP1/protein-tyrosine phosphatase . Two previously described GLEPP1 substrates, paxillin and Syk, are both required for cytoskeletal rearrangement and cellular motility of leukocytes in chemotaxis. We show here that GLEPP1 inhibitors prevent dephosphorylation of Syk1 and paxillin in resting cells and block primary human monocyte and mouse bone marrow-derived macrophage chemotaxis in a gradient of monocyte chemotactic protein-1. In mice, the GLEPP1 inhibitors also reduce thioglycolate-induced peritoneal chemotaxis of neutrophils, lymphocytes, and macrophages. In murine disease models, the GLEPP1 inhibitors significantly reduce severity of contact hypersensitivity, a model for allergic dermatitis, and dextran sulfate sodium-induced ulcerative colitis, a model for inflammatory bowel disease. Taken together, our data provide confirmation that GLEPP1 plays an important role in controlling chemotaxis of multiple types of leukocytes and that pharmacological inhibition of this phosphatase may have therapeutic use.


Subject(s)
Chemotaxis/drug effects , Colitis, Ulcerative/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/chemistry , Animals , Colitis, Ulcerative/drug therapy , Cytoskeleton/metabolism , Female , In Vitro Techniques , Leukocytes/metabolism , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Molecular Conformation , Monocytes/metabolism , Phosphoric Monoester Hydrolases/metabolism , Protein Tyrosine Phosphatases/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/adverse effects , Signal Transduction , Thioglycolates/pharmacology
4.
J Med Chem ; 46(21): 4365-8, 2003 Oct 09.
Article in English | MEDLINE | ID: mdl-14521400

ABSTRACT

There is compelling evidence that Bax channel activity stimulates cytochrome c release leading ultimately to cell death, which is a key event in ischemic injuries and neurodegenerative diseases. Here 3,6-dibromocarbazole piperazine derivatives of 2-propanol are described as the first small and potent modulators of the cytochrome c release triggered by Bid-induced Bax activation in a mitochondrial assay. Furthermore, a mechanism of action is proposed, and fluorescent derivatives allowing the localization of such inhibitors are reported.


Subject(s)
Carbazoles/chemical synthesis , Carbazoles/pharmacology , Cytochrome c Group/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Piperazines/chemical synthesis , Piperazines/pharmacology , Proto-Oncogene Proteins c-bcl-2 , Proto-Oncogene Proteins/metabolism , Apoptosis/drug effects , Cytochrome c Group/antagonists & inhibitors , Fluorescent Dyes , HeLa Cells , Humans , Indicators and Reagents , Liposomes , Mitochondria/drug effects , Mitochondria/enzymology , Proto-Oncogene Proteins/antagonists & inhibitors , Structure-Activity Relationship , bcl-2-Associated X Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...