Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 115(32): E7532-E7540, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30037993

ABSTRACT

Marine population dynamics often depend on dispersal of larvae with infinitesimal odds of survival, creating selective pressure for larval behaviors that enhance transport to suitable habitats. One intriguing possibility is that larvae navigate using physical signals dominating their natal environments. We tested whether flow-induced larval behaviors vary with adults' physical environments, using congeneric snail larvae from the wavy continental shelf (Tritia trivittata) and from turbulent inlets (Tritia obsoleta). Turbulence and flow rotation (vorticity) induced both species to swim more energetically and descend more frequently. Accelerations, the strongest signal from waves, induced a dramatic response in T. trivittata but almost no response in competent T. obsoleta Early stage T. obsoleta did react to accelerations, ruling out differences in sensory capacities. Larvae likely distinguished turbulent vortices from wave oscillations using statocysts. Statocysts' ability to sense acceleration would also enable detection of low-frequency sound from wind and waves. T. trivittata potentially hear and react to waves that provide a clear signal over the continental shelf, whereas T. obsoleta effectively "go deaf" to wave motions that are weak in inlets. Their contrasting responses to waves would cause these larvae to move in opposite directions in the water columns of their respective adult habitats. Simulations showed that the congeners' transport patterns would diverge over the shelf, potentially reinforcing the separate biogeographic ranges of these otherwise similar species. Responses to turbulence could enhance settlement but are unlikely to aid large-scale navigation, whereas shelf species' responses to waves may aid retention over the shelf via Stokes drift.


Subject(s)
Behavior, Animal/physiology , Cues , Larva/physiology , Snails/physiology , Water Movements , Animals , Aquatic Organisms/physiology , Ecosystem , Motion , Oceans and Seas , Population Dynamics , Sound , Swimming/psychology
2.
J Exp Biol ; 218(Pt 17): 2782-92, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26333930

ABSTRACT

Mollusk larvae have a stable, velum-up orientation that may influence how they sense and react to hydrodynamic signals applied in different directions. Directional sensing abilities and responses could affect how a larva interacts with anisotropic fluid motions, including those in feeding currents and in boundary layers encountered during settlement. Oyster larvae (Crassostrea virginica) were exposed to simple shear in a Couette device and to solid-body rotation in a single rotating cylinder. Both devices were operated in two different orientations, one with the axis of rotation parallel to the gravity vector, and one with the axis perpendicular. Larvae and flow were observed simultaneously with near-infrared particle-image velocimetry, and behavior was quantified as a response to strain rate, vorticity and centripetal acceleration. Only flows rotating about a horizontal axis elicited the diving response observed previously for oyster larvae in turbulence. The results provide strong evidence that the turbulence-sensing mechanism relies on gravity-detecting organs (statocysts) rather than mechanosensors (cilia). Flow sensing with statocysts sets oyster larvae apart from zooplankters such as copepods and protists that use external mechanosensors in sensing spatial velocity gradients generated by prey or predators. Sensing flow-induced changes in orientation, rather than flow deformation, would enable more efficient control of vertical movements. Statocysts provide larvae with a mechanism of maintaining their upward swimming when rotated by vortices and initiating dives toward the seabed in response to the strong turbulence associated with adult habitats.


Subject(s)
Crassostrea/physiology , Acceleration , Animals , Behavior, Animal , Cues , Hydrodynamics , Larva/physiology , Orientation/physiology , Rheology , Rotation , Sensory Receptor Cells/physiology , Swimming
3.
J Exp Biol ; 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26163578

ABSTRACT

Mollusc larvae have a stable, velum-up orientation that may influence how they sense and react to hydrodynamic signals applied in different directions. Directional sensing abilities and responses could affect how a larva interacts with anisotropic fluid motions, including those in feeding currents and in boundary layers encountered during settlement. Oyster larvae (Crassostrea virginica) were exposed to simple shear in a Couette device and to solid-body rotation in a single rotating cylinder. Both devices were operated in two different orientations, one with the axis of rotation parallel to the gravity vector, and one with the axis perpendicular. Larvae and flow were observed simultaneously with near-infrared particle-image velocimetry, and behaviors were quantified as a response to strain rate, vorticity, and centripetal acceleration. Only flows rotating about a horizontal axis elicited the diving response observed previously for oyster larvae in turbulence. The results provide strong evidence that the turbulence-sensing mechanism relies on gravity-detecting organs (statocysts) rather than mechanosensors (cilia). Flow sensing with statocysts sets oyster larvae apart from zooplankters such as copepods and protists that use external mechanosensors in sensing spatial velocity gradients generated by prey or predators. Sensing flow-induced changes in orientation, rather than flow deformation, would enable more efficient control of vertical movements. Statocysts provide larvae with a mechanism of maintaining their upward swimming when rotated by vortices and initiating dives toward the seabed in response to the strong turbulence associated with adult habitats.

4.
J Exp Biol ; 218(Pt 9): 1419-32, 2015 May.
Article in English | MEDLINE | ID: mdl-25788721

ABSTRACT

Hydrodynamic signals from turbulence and waves may provide marine invertebrate larvae with behavioral cues that affect the pathways and energetic costs of larval delivery to adult habitats. Oysters (Crassostrea virginica) live in sheltered estuaries with strong turbulence and small waves, but their larvae can be transported into coastal waters with large waves. These contrasting environments have different ranges of hydrodynamic signals, because turbulence generally produces higher spatial velocity gradients, whereas waves can produce higher temporal velocity gradients. To understand how physical processes affect oyster larval behavior, transport and energetics, we exposed larvae to different combinations of turbulence and waves in flow tanks with (1) wavy turbulence, (2) a seiche and (3) rectilinear accelerations. We quantified behavioral responses of individual larvae to local instantaneous flows using two-phase, infrared particle-image velocimetry. Both high dissipation rates and high wave-generated accelerations induced most larvae to swim faster upward. High dissipation rates also induced some rapid, active dives, whereas high accelerations induced only weak active dives. In both turbulence and waves, faster swimming and active diving were achieved through an increase in propulsive force and power output that would carry a high energetic cost. Swimming costs could be offset if larvae reaching surface waters had a higher probability of being transported shoreward by Stokes drift, whereas diving costs could be offset by enhanced settlement or predator avoidance. These complex behaviors suggest that larvae integrate multiple hydrodynamic signals to manage dispersal tradeoffs, spending more energy to raise the probability of successful transport to suitable locations.


Subject(s)
Crassostrea/physiology , Water Movements , Animals , Crassostrea/growth & development , Diving , Hydrodynamics , Larva/growth & development , Larva/physiology , Rheology , Swimming
SELECTION OF CITATIONS
SEARCH DETAIL
...