Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(3)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38542558

ABSTRACT

This research investigates the enhancement of barley's resistance to salt stress by integrating nanoparticles and employing a nanostructured Co3O4 sensor for the electrochemical detection of hydrogen peroxide (H2O2), a crucial indicator of oxidative stress. The novel sensor, featuring petal-shaped Co3O4 nanostructures, exhibits remarkable precision and sensitivity to H2O2 in buffer solution, showcasing notable efficacy in complex analytes like plant juice. The research establishes that the introduction of Fe3O4 nanoparticles significantly improves barley's ability to withstand salt stress, leading to a reduction in detected H2O2 concentrations, alongside positive impacts on morphological parameters and photosynthesis rates. The developed sensor promises to provide real-time monitoring of barley stress responses, providing valuable information on increasing tolerance to crop stressors.

2.
Beilstein J Nanotechnol ; 13: 1004-1010, 2022.
Article in English | MEDLINE | ID: mdl-36225851

ABSTRACT

Metallic nanostructures are applied in many fields, including photonics and plasmonics, due to their ability to absorb or emit light at frequencies which depend on their size and shape. It was recently shown that irradiation by a focused electron beam can promote the growth of nanostructures on metal surfaces and the height of these structures depends on the duration of the irradiation and the material of the surface. However, the effects on growth dynamics of numerous irradiation parameters, such as beam current or angle of incidence, have not yet been studied in detail. We explore the effects of focusing, angle of incidence, and current of the electron beam on the size and shape of the resulting structures on an Ag surface. In addition, we investigate how the nitrogen plasma cleaning procedure of a vacuum chamber can affect the growth of these structures. A beam current of around 40 pA resulted in the fastest structure growth rate. By increasing the beam diameter and angle of incidence the growth rate decreased; however, by raising the beam focus up to 5-6 µm above the surface the growth rate increased. Vacuum chamber cleaning reduced structure growth rate for a few hours. These findings can help to better control and optimise the growth of nanostructures on metal surfaces undergoing irradiation by a focused electron beam.

3.
Beilstein J Nanotechnol ; 13: 424-436, 2022.
Article in English | MEDLINE | ID: mdl-35601536

ABSTRACT

This article describes the synthesis of nanostructured copper oxide on copper wires and its application for the detection of hydrogen peroxide. Copper oxide petal nanostructures were obtained by a one-step hydrothermal oxidation method. The resulting coating is uniform and dense and shows good adhesion to the wire surface. Structure, surface, and composition of the obtained samples were studied using field-emission scanning electron microscopy along with energy-dispersive spectroscopy and X-ray diffractometry. The resulting nanostructured samples were used for electrochemical determination of the H2O2 content in a 0.1 M NaOH buffer solution using cyclic voltammetry, differential pulse voltammetry, and i-t measurements. A good linear relationship between the peak current and the concentration of H2O2 in the range from 10 to 1800 µM was obtained. The sensitivity of the obtained CuO electrode is 439.19 µA·mM-1. The calculated limit of detection is 1.34 µM, assuming a signal-to-noise ratio of 3. The investigation of the system for sensitivity to interference showed that the most common interfering substances, that is, ascorbic acid, uric acid, dopamine, NaCl, glucose, and acetaminophen, do not affect the electrochemical response. The real milk sample test showed a high recovery rate (more than 95%). According to the obtained results, this sensor is suitable for practical use for the qualitative detection of H2O2 in real samples, as well as for the quantitative determination of its concentration.

4.
Molecules ; 26(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34771116

ABSTRACT

Sustainable agricultural practices are still essential due to soil degradation and crop losses. Recently, the relationship between plants and nanoparticles (NPs) attracted scientists' attention, especially for applications in agricultural production as nanonutrition. Therefore, the present research was carried out to investigate the effect of Fe3O4 NPs at low concentrations (0, 1, 10, and 20 mg/L) on three genotypes of barley (Hordeum vulgare L.) seedlings grown in hydroponic conditions. Significant increases in seedling growth, enhanced chlorophyll quality and quantity, and two miRNA expression levels were observed. Additionally, increased genotoxicity was observed in seedlings grown with NPs. Generally, Fe3O4 NPs at low concentrations could be successfully used as nanonutrition for increasing barley photosynthetic efficiency with consequently enhanced yield. These results are important for a better understanding of the potential impact of Fe3O4 NPs at low concentrations in agricultural crops and the potential of these NPs as nanonutrition for barley growth and yield enhancement. Future studies are needed to investigate the effect of these NPs on the expression of resistance-related genes and chlorophyll synthesis-related gene expression in treated barley seedlings.


Subject(s)
DNA Damage , Genotype , Hordeum/genetics , Magnetic Iron Oxide Nanoparticles/adverse effects , Stress, Physiological , Chlorophyll/metabolism , Comet Assay , DNA Damage/drug effects , DNA, Plant , Gene Expression Regulation, Plant/drug effects , Hordeum/metabolism , Magnetic Iron Oxide Nanoparticles/ultrastructure , Plant Development/drug effects , Seedlings/drug effects , Seedlings/growth & development
5.
ScientificWorldJournal ; 2020: 6649746, 2020.
Article in English | MEDLINE | ID: mdl-33343237

ABSTRACT

Zinc oxide nanoparticles are one of the most commonly engineered nanomaterials and necessarily enter the environment because of the large quantities produced and their widespread application. Understanding the impacts of nanoparticles on plant growth and development is crucial for the assessment of probable environmental risks to food safety and human health, because plants are a fundamental living component of the ecosystem and the most important source in the human food chain. The objective of this study was to examine the impact of different concentrations of zinc oxide nanoparticles on barley Hordeum vulgare L. seed germination, seedling morphology, root cell viability, stress level, genotoxicity, and expression of miRNAs. The results demonstrate that zinc oxide nanoparticles enhance barley seed germination, shoot/root elongation, and H2O2 stress level and decrease root cell viability and genomic template stability and up- and downregulated miRNAs in barley seedlings.


Subject(s)
Hordeum/drug effects , Hordeum/genetics , Metal Nanoparticles/chemistry , Seedlings/drug effects , Seedlings/genetics , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Biomass , DNA Damage/drug effects , Gene Expression Regulation, Plant/drug effects , Genomic Instability , Germination/drug effects , Germination/genetics , Humans , Metal Nanoparticles/ultrastructure , MicroRNAs/genetics , Phenotype , Plant Development/drug effects , Plant Development/genetics , Stress, Physiological
6.
Beilstein J Nanotechnol ; 9: 2421-2431, 2018.
Article in English | MEDLINE | ID: mdl-30254837

ABSTRACT

ZnO nanostructures are promising candidates for use in sensors, especially in electrochemical sensors and biosensors, due to their unique physical and chemical properties, as well as sensitivity and selectivity to several types of contamination, including heavy metal ions. In this work, using the hydrothermal method, nanostructures of ZnO were synthesized in four different morphologies: nanorods, nanoneedles, nanotubes and nanoplates. To determine the peculiarities of adsorption for each morphology, a series of electrochemical measurements were carried out using these nanostructured ZnO coatings on the working electrodes, using aqueous solutions of Pb(NO3)2 and Cd(NO3)2 as analytes with different concentrations. It was found that the sensitivity of the resulting electrochemical sensors depends on the morphology of the ZnO nanostructures: the best results were achieved in the case of porous nanostructures (nanotubes and nanoplates), whereas the lowest sensitivity corresponded to ZnO nanorods with a large diameter (i.e., low surface-to-volume ratio). The efficiency of sedimentation is also related to the electronegativity of adsorbate: it has been shown that all observed ZnO morphologies exhibited significantly higher sensitivity in detecting lead ions compared to cadmium ions.

7.
Int J Genomics ; 2017: 1676874, 2017.
Article in English | MEDLINE | ID: mdl-28326314

ABSTRACT

Nanoparticles influence on genome is investigated worldwide. The appearance of somaclonal variation is a cause of great concern for any micropropagation system. Somaclonal variation describes the tissue-culture-induced phenotypic and genotypic variations. This paper shows the results of somaclonal variation in two resistance genes pectin methylesterase and Mlo-like protein in all tissue culture development stages, as donor plant, calluses, and regenerants of Linum usitatissimum induced by gold and silver nanoparticles. In this paper, it was essential to obtain DNA material from all tissue culture development stages from one donor plant to record changes in each nucleotide sequence. Gene region specific primers were developed for resistance genes such as Mlo and Pme3 to define the genetic variability in tissue culture of L. usitatissimum. In recent years, utilization of gold and silver nanoparticles in tissue culture is increased and the mechanisms of changes in genome induced by nanoparticles still remain unclear. Obtained data show the somaclonal variation increase in calluses obtained from one donor plant and grown on medium supplemented by gold nanoparticles (Mlo 14.68 ± 0.98; Pme3 2.07 ± 0.87) or silver nanoparticles (Mlo 12.01 ± 0.43; Pme3 10.04 ± 0.46) and decrease in regenerants. Morphological parameters of calluses showed a number of differences between each investigated culture group.

8.
J Biotechnol ; 165(2): 127-32, 2013 May 20.
Article in English | MEDLINE | ID: mdl-23545504

ABSTRACT

We demonstrate a method for direct delivery of metal nanoparticles to flax calli and regenerant cells by vacuum deposition of metal nanolayers on powdered hormone followed by dispersal of the combined hormone-metal in medium. The penetration and location of the gold (AuNPs) and silver (AgNPs) nanoparticles in calli and in plant regenerants were confirmed by optical absorption spectroscopy and scanning electron microscopy. We detected a significant effect of the AuNPs and AgNPs on the regeneration type of flax calli.


Subject(s)
Flax/metabolism , Gold/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...