Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Immunol Rev ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809041

ABSTRACT

Multiple sclerosis (MS) affects more than 2.8 million people worldwide but the distribution is not even. Although over 200 gene variants have been associated with susceptibility, studies of genetically identical monozygotic twin pairs suggest that the genetic make-up is responsible for only about 20%-30% of the risk to develop disease, while the rest is contributed by milieu factors. Recently, a new, unexpected player has entered the ranks of MS-triggering or facilitating elements: the human gut microbiota. In this review, we summarize the present knowledge of microbial effects on formation of a pathogenic autoreactive immune response targeting the distant central nervous system and delineate the approaches, both in people with MS and in MS animal models, which have led to this concept. Finally, we propose that a tight combination of investigations of human patients with studies of suitable animal models is the best strategy to functionally characterize disease-associated microbiota and thereby contribute to deciphering pathogenesis of a complex human disease.

2.
J Autoimmun ; 146: 103234, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663202

ABSTRACT

Narcolepsy is a rare cause of hypersomnolence and may be associated or not with cataplexy, i.e. sudden muscle weakness. These forms are designated narcolepsy-type 1 (NT1) and -type 2 (NT2), respectively. Notable characteristics of narcolepsy are that most patients carry the HLA-DQB1*06:02 allele and NT1-patients have strongly decreased levels of hypocretin-1 (synonym orexin-A) in the cerebrospinal fluid (CSF). The pathogenesis of narcolepsy is still not completely understood but the strong HLA-bias and increased frequencies of CD4+ T cells reactive to hypocretin in the peripheral blood suggest autoimmune processes in the hypothalamus. Here we analyzed the transcriptomes of CSF-cells from twelve NT1 and two NT2 patients by single cell RNAseq (scRNAseq). As controls, we used CSF cells from patients with multiple sclerosis, radiologically isolated syndrome, and idiopathic intracranial hypertension. From 27,255 CSF cells, we identified 20 clusters of different cell types and found significant differences in three CD4+ T cell and one monocyte clusters between narcolepsy and multiple sclerosis patients. Over 1000 genes were differentially regulated between patients with NT1 and other diseases. Surprisingly, the most strongly upregulated genes in narcolepsy patients as compared to controls were coding for the genome-encoded MTRNR2L12 and MTRNR2L8 peptides, which are homologous to the mitochondria-encoded HUMANIN peptide that is known playing a role in other neurological diseases including Alzheimer's disease.


Subject(s)
Narcolepsy , Single-Cell Analysis , Transcriptome , Humans , Narcolepsy/genetics , Narcolepsy/cerebrospinal fluid , Male , Female , Adult , Orexins/cerebrospinal fluid , Orexins/genetics , Gene Expression Profiling , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , HLA-DQ beta-Chains/genetics , Middle Aged , Young Adult
3.
Med ; 5(4): 368-373.e3, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38531361

ABSTRACT

BACKGROUND: In multiple sclerosis (MS), B cells are considered main triggers of the disease, likely as the result of complex interaction between genetic and environmental risk factors. Studies on monozygotic twins discordant for MS offer a unique way to reduce this complexity and reveal discrepant subsets. METHODS: In this study, we analyzed B cell subsets in blood samples of monozygotic twins with and without MS using publicly available data. We verified functional characteristics by exploring the role of therapy and performed separate analyses in unrelated individuals. FINDINGS: The frequencies of CXCR3+ memory B cells were reduced in the blood of genetically identical twins with MS compared to their unaffected twin siblings. Natalizumab (anti-VLA-4 antibody) was the only treatment regimen under which these frequencies were reversed. The CNS-homing features of CXCR3+ memory B cells were supported by elevated CXCL10 levels in MS cerebrospinal fluid and their in vitro propensity to develop into antibody-secreting cells. CONCLUSIONS: Circulating CXCR3+ memory B cells are affected by non-heritable cues in people who develop MS. This underlines the requirement of environmental risk factors such as Epstein-Barr virus in triggering these B cells. We propose that after CXCL10-mediated entry into the CNS, CXCR3+ memory B cells mature into antibody-secreting cells to drive MS. FUNDING: This work was supported by Nationaal MS Fonds (OZ2021-016), Stichting MS Research (19-1057 MS, 20-490f MS, and 21-1142 MS), the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program grant agreement no. 882424, and the Swiss National Science Foundation (733 310030_170320, 310030_188450, and CRSII5_183478).


Subject(s)
Epstein-Barr Virus Infections , Multiple Sclerosis , Humans , Multiple Sclerosis/genetics , Memory B Cells , Herpesvirus 4, Human , Natalizumab , Receptors, CXCR3
4.
Ther Adv Neurol Disord ; 16: 17562864231180730, 2023.
Article in English | MEDLINE | ID: mdl-37780055

ABSTRACT

Background: While substantial progress has been made in the development of disease-modifying medications for multiple sclerosis (MS), a high percentage of treated patients still show progression and persistent inflammatory activity. Autologous haematopoietic stem cell transplantation (AHSCT) aims at eliminating a pathogenic immune repertoire through intense short-term immunosuppression that enables subsequent regeneration of a new and healthy immune system to re-establish immune tolerance for a long period of time. A number of mostly open-label, uncontrolled studies conducted over the past 20 years collected about 4000 cases. They uniformly reported high efficacy of AHSCT in controlling MS inflammatory disease activity, more markedly beneficial in relapsing-remitting MS. Immunological studies provided evidence for qualitative immune resetting following AHSCT. These data and improved safety profiles of transplantation procedures spurred interest in using AHSCT as a treatment option for MS. Objective: To develop expert consensus recommendations on AHSCT in Germany and outline a registry study project. Methods: An open call among MS neurologists as well as among experts in stem cell transplantation in Germany started in December 2021 to join a series of virtual meetings. Results: We provide a consensus-based opinion paper authored by 25 experts on the up-to-date optimal use of AHSCT in managing MS based on the Swiss criteria. Current data indicate that patients who are most likely to benefit from AHSCT have relapsing-remitting MS and are young, ambulatory and have high disease activity. Treatment data with AHSCT will be collected within the German REgistry Cohort of autologous haematopoietic stem CeLl trAnsplantation In MS (RECLAIM). Conclusion: Further clinical trials, including registry-based analyses, are urgently needed to better define the patient characteristics, efficacy and safety profile of AHSCT compared with other high-efficacy therapies and to optimally position it as a treatment option in different MS disease stages.


Autologous haematopoietic stem cell transplantation for multiple sclerosis Substantial progress has been made in the development of disease-modifying medications for multiple sclerosis (MS) during the last 20 years. However, in a relevant percentage of patients, the disease cannot completely be contained. Autologous haematopoietic stem cell transplantation (AHSCT) enables rebuilding of a new and healthy immune system and to potentially stop the autoimmune disease process for a long time. A number of studies documenting 4000 cases cumulatively over the past 20 years reported high efficacy of AHSCT in controlling MS inflammatory disease activity. These data and improved safety profiles of the treatment procedures spurred interest in using AHSCT as a treatment option for MS. An open call among MS neurologists as well as among experts in stem cell transplantation in Germany started in December 2021 to join a series of video calls to develop recommendations and outline a registry study project. We provide a consensus-based opinion paper authored by 25 experts on the up-to-date optimal use of AHSCT in managing MS. Current data indicate that patients are most likely to benefit from AHSCT if they are young, ambulatory, with high disease activity, that is, relapses or new magnetic resonance imaging (MRI) lesions. Treatment data with AHSCT will be collected within the German REgistry Cohort of autoLogous haematopoietic stem cell transplantation MS (RECLAIM). Further clinical trials including registry-based analyses and systematic follow-up are urgently needed to better define the optimal patient characteristics as well as the efficacy and safety profile of AHSCT compared with other high-efficacy therapies. These will help to position AHSCT as a treatment option in different MS disease stages.

5.
Nat Neurosci ; 26(10): 1713-1725, 2023 10.
Article in English | MEDLINE | ID: mdl-37709997

ABSTRACT

Multiple sclerosis (MS) involves the infiltration of autoreactive T cells into the CNS, yet we lack a comprehensive understanding of the signaling pathways that regulate this process. Here, we conducted a genome-wide in vivo CRISPR screen in a rat MS model and identified 5 essential brakes and 18 essential facilitators of T cell migration to the CNS. While the transcription factor ETS1 limits entry to the CNS by controlling T cell responsiveness, three functional modules, centered around the adhesion molecule α4-integrin, the chemokine receptor CXCR3 and the GRK2 kinase, are required for CNS migration of autoreactive CD4+ T cells. Single-cell analysis of T cells from individuals with MS confirmed that the expression of these essential regulators correlates with the propensity of CD4+ T cells to reach the CNS. Our data thus reveal key regulators of the fundamental step in the induction of MS lesions.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Rats , Animals , Multiple Sclerosis/pathology , Central Nervous System/pathology , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , T-Lymphocytes/metabolism , Cell Movement/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology
7.
Acta Neuropathol ; 145(3): 335-355, 2023 03.
Article in English | MEDLINE | ID: mdl-36695896

ABSTRACT

B cells contribute to the pathogenesis of both cellular- and humoral-mediated central nervous system (CNS) inflammatory diseases through a variety of mechanisms. In such conditions, B cells may enter the CNS parenchyma and contribute to local tissue destruction. It remains unexplored, however, how infection and autoimmunity drive transcriptional phenotypes, repertoire features, and antibody functionality. Here, we profiled B cells from the CNS of murine models of intracranial (i.c.) viral infections and autoimmunity. We identified a population of clonally expanded, antibody-secreting cells (ASCs) that had undergone class-switch recombination and extensive somatic hypermutation following i.c. infection with attenuated lymphocytic choriomeningitis virus (rLCMV). Recombinant expression and characterisation of these antibodies revealed specificity to viral antigens (LCMV glycoprotein GP), correlating with ASC persistence in the brain weeks after resolved infection. Furthermore, these virus-specific ASCs upregulated proliferation and expansion programs in response to the conditional and transient induction of the LCMV GP as a neo-self antigen by astrocytes. This class-switched, clonally expanded, and mutated population persisted and was even more pronounced when peripheral B cells were depleted prior to autoantigen induction in the CNS. In contrast, the most expanded B cell clones in mice with persistent expression of LCMV GP in the CNS did not exhibit neo-self antigen specificity, potentially a consequence of local tolerance induction. Finally, a comparable population of clonally expanded, class-switched, and proliferating ASCs was detected in the cerebrospinal fluid of relapsing multiple sclerosis (RMS) patients. Taken together, our findings support the existence of B cells that populate the CNS and are capable of responding to locally encountered autoantigens.


Subject(s)
Antibody-Producing Cells , Autoantigens , Mice , Animals , B-Lymphocytes , Lymphocytic choriomeningitis virus , Brain
9.
J Exp Med ; 219(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36048016

ABSTRACT

Epstein-Barr virus (EBV) infection precedes multiple sclerosis (MS) pathology and cross-reactive antibodies might link EBV infection to CNS autoimmunity. As an altered anti-EBV T cell reaction was suggested in MS, we queried peripheral blood T cell receptor ß chain (TCRß) repertoires of 1,395 MS patients, 887 controls, and 35 monozygotic, MS-discordant twin pairs for multimer-confirmed, viral antigen-specific TCRß sequences. We detected more MHC-I-restricted EBV-specific TCRß sequences in MS patients. Differences in genetics or upbringing could be excluded by validation in monozygotic twin pairs discordant for MS. Anti-VLA-4 treatment amplified this observation, while interferon ß- or anti-CD20 treatment did not modulate EBV-specific T cell occurrence. In healthy individuals, EBV-specific CD8+ T cells were of an effector-memory phenotype in peripheral blood and cerebrospinal fluid. In MS patients, cerebrospinal fluid also contained EBV-specific central-memory CD8+ T cells, suggesting recent priming. Therefore, MS is not only preceded by EBV infection, but also associated with broader EBV-specific TCR repertoires, consistent with an ongoing anti-EBV immune reaction in MS.


Subject(s)
Epstein-Barr Virus Infections , Multiple Sclerosis , CD8-Positive T-Lymphocytes , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human , Humans , Receptors, Antigen, T-Cell, alpha-beta/genetics
10.
Nature ; 603(7899): 152-158, 2022 03.
Article in English | MEDLINE | ID: mdl-35173329

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system underpinned by partially understood genetic risk factors and environmental triggers and their undefined interactions1,2. Here we investigated the peripheral immune signatures of 61 monozygotic twin pairs discordant for MS to dissect the influence of genetic predisposition and environmental factors. Using complementary multimodal high-throughput and high-dimensional single-cell technologies in conjunction with data-driven computational tools, we identified an inflammatory shift in a monocyte cluster of twins with MS, coupled with the emergence of a population of IL-2 hyper-responsive transitional naive helper T cells as MS-related immune alterations. By integrating data on the immune profiles of healthy monozygotic and dizygotic twin pairs, we estimated the variance in CD25 expression by helper T cells displaying a naive phenotype to be largely driven by genetic and shared early environmental influences. Nonetheless, the expanding helper T cells of twins with MS, which were also elevated in non-twin patients with MS, emerged independent of the individual genetic makeup. These cells expressed central nervous system-homing receptors, exhibited a dysregulated CD25-IL-2 axis, and their proliferative capacity positively correlated with MS severity. Together, our matched-pair analysis of the extended twin approach allowed us to discern genetically and environmentally determined features of an MS-associated immune signature.


Subject(s)
Multiple Sclerosis , Genetic Predisposition to Disease/genetics , Humans , Interleukin-2/genetics , OX40 Ligand , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics
11.
Nat Immunol ; 22(7): 880-892, 2021 07.
Article in English | MEDLINE | ID: mdl-34099917

ABSTRACT

Multidimensional single-cell analyses of T cells have fueled the debate about whether there is extensive plasticity or 'mixed' priming of helper T cell subsets in vivo. Here, we developed an experimental framework to probe the idea that the site of priming in the systemic immune compartment is a determinant of helper T cell-induced immunopathology in remote organs. By site-specific in vivo labeling of antigen-specific T cells in inguinal (i) or gut draining mesenteric (m) lymph nodes, we show that i-T cells and m-T cells isolated from the inflamed central nervous system (CNS) in a model of multiple sclerosis (MS) are distinct. i-T cells were Cxcr6+, and m-T cells expressed P2rx7. Notably, m-T cells infiltrated white matter, while i-T cells were also recruited to gray matter. Therefore, we propose that the definition of helper T cell subsets by their site of priming may guide an advanced understanding of helper T cell biology in health and disease.


Subject(s)
Autoimmunity , Brain/immunology , Cell Lineage , Encephalomyelitis, Autoimmune, Experimental/immunology , Intestines/immunology , Skin/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adoptive Transfer , Animals , Autoimmunity/drug effects , Brain/drug effects , Brain/metabolism , Calcium Signaling , Cerebrospinal Fluid/immunology , Cerebrospinal Fluid/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Fingolimod Hydrochloride/pharmacology , Gene Expression Profiling , Genes, T-Cell Receptor , HEK293 Cells , Humans , Immunosuppressive Agents/pharmacology , Intestines/drug effects , Intravital Microscopy , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Multiple Sclerosis, Relapsing-Remitting/genetics , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/metabolism , Phenotype , Prospective Studies , RNA-Seq , Receptors, CXCR6/genetics , Receptors, CXCR6/metabolism , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Single-Cell Analysis , Skin/drug effects , Skin/metabolism , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Helper-Inducer/transplantation , Transcriptome
12.
Neuroimage Clin ; 31: 102734, 2021.
Article in English | MEDLINE | ID: mdl-34171607

ABSTRACT

Multiple genetic and non-heritable factors have been linked to the risk of multiple sclerosis (MS). These factors seem to contribute to disease pathogenesis before the onset of clinical symptoms, as suggested by incidental MRI evidence of subclinical MS neuropathology in individuals without clinical symptoms. Individuals with high familial risk for MS, such as first-degree relatives of patients with MS, can be studied by MRI to characterize the neuropathology during a subclinical period of MS. 16 studies published in English, which performed brain MRI on healthy individuals with high familial risk of MS were included in this scoping review. Studies suggest either no conclusive (5), or inconclusive yet considerable (4), or conclusive evidence (7) for the incidence of subclinical neuropathology, including focal and diffuse tissue damage. Across all studies, white matter lesions fulfilling MS criteria were observed in 86 of 613 individuals (14%). Future research is needed to evaluate the longitudinal dynamics and clinical relevance of preclinical imaging abnormalities in MS.


Subject(s)
Multiple Sclerosis , Nervous System Diseases , Brain/diagnostic imaging , Genetic Predisposition to Disease , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/genetics
13.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Article in English | MEDLINE | ID: mdl-33619082

ABSTRACT

Encephalitis associated with antibodies against the neuronal gamma-aminobutyric acid A receptor (GABAA-R) is a rare form of autoimmune encephalitis. The pathogenesis is still unknown but autoimmune mechanisms were surmised. Here we identified a strongly expanded B cell clone in the cerebrospinal fluid of a patient with GABAA-R encephalitis. We expressed the antibody produced by it and showed by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry that it recognizes the GABAA-R. Patch-clamp recordings revealed that it tones down inhibitory synaptic transmission and causes increased excitability of hippocampal CA1 pyramidal neurons. Thus, the antibody likely contributed to clinical disease symptoms. Hybridization to a protein array revealed the cross-reactive protein LIM-domain-only protein 5 (LMO5), which is related to cell-cycle regulation and tumor growth. We confirmed LMO5 recognition by immunoprecipitation and ELISA and showed that cerebrospinal fluid samples from two other patients with GABAA-R encephalitis also recognized LMO5. This suggests that cross-reactivity between GABAA-R and LMO5 is frequent in GABAA-R encephalitis and supports the hypothesis of a paraneoplastic etiology.


Subject(s)
Antigens, Neoplasm/immunology , Autoantibodies/immunology , Cross Reactions/immunology , Disease Susceptibility , Encephalitis/etiology , Receptors, GABA-A/immunology , Autoantigens/immunology , Autoimmune Diseases of the Nervous System/etiology , Autoimmune Diseases of the Nervous System/metabolism , Autoimmunity , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers , Disease Susceptibility/immunology , Encephalitis/metabolism , Encephalitis/pathology , Humans , Pyramidal Cells/immunology , Pyramidal Cells/metabolism
15.
Acta Neuropathol Commun ; 8(1): 207, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33256847

ABSTRACT

Autoimmune disorders of the central nervous system (CNS) comprise a broad spectrum of clinical entities. The stratification of patients based on the recognized autoantigen is of great importance for therapy optimization and for concepts of pathogenicity, but for most of these patients, the actual target of their autoimmune response is unknown. Here we investigated oligodendrocyte myelin glycoprotein (OMGP) as autoimmune target, because OMGP is expressed specifically in the CNS and there on oligodendrocytes and neurons. Using a stringent cell-based assay, we detected autoantibodies to OMGP in serum of 8/352 patients with multiple sclerosis, 1/28 children with acute disseminated encephalomyelitis and unexpectedly, also in one patient with psychosis, but in none of 114 healthy controls. Since OMGP is GPI-anchored, we validated its recognition also in GPI-anchored form. The autoantibodies to OMGP were largely IgG1 with a contribution of IgG4, indicating cognate T cell help. We found high levels of soluble OMGP in human spinal fluid, presumably due to shedding of the GPI-linked OMGP. Analyzing the pathogenic relevance of autoimmunity to OMGP in an animal model, we found that OMGP-specific T cells induce a novel type of experimental autoimmune encephalomyelitis dominated by meningitis above the cortical convexities. This unusual localization may be directed by intrathecal uptake and presentation of OMGP by meningeal phagocytes. Together, OMGP-directed autoimmunity provides a new element of heterogeneity, helping to improve the stratification of patients for diagnostic and therapeutic purposes.


Subject(s)
Autoantibodies/immunology , Autoimmunity/immunology , Encephalomyelitis, Acute Disseminated/immunology , Multiple Sclerosis/immunology , Oligodendrocyte-Myelin Glycoprotein/immunology , Adult , Animals , Case-Control Studies , Child , Child, Preschool , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Humans , Immunoglobulin G/immunology , Male , Mice , Middle Aged , Psychotic Disorders/immunology , Rats , T-Lymphocytes/immunology , Young Adult
16.
Proc Natl Acad Sci U S A ; 117(35): 21546-21556, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32817525

ABSTRACT

The tremendous heterogeneity of the human population presents a major obstacle in understanding how autoimmune diseases like multiple sclerosis (MS) contribute to variations in human peripheral immune signatures. To minimize heterogeneity, we made use of a unique cohort of 43 monozygotic twin pairs clinically discordant for MS and searched for disease-related peripheral immune signatures in a systems biology approach covering a broad range of adaptive and innate immune populations on the protein level. Despite disease discordance, the immune signatures of MS-affected and unaffected cotwins were remarkably similar. Twinship alone contributed 56% of the immune variation, whereas MS explained 1 to 2% of the immune variance. Notably, distinct traits in CD4+ effector T cell subsets emerged when we focused on a subgroup of twins with signs of subclinical, prodromal MS in the clinically healthy cotwin. Some of these early-disease immune traits were confirmed in a second independent cohort of untreated early relapsing-remitting MS patients. Early involvement of effector T cell subsets thus points to a key role of T cells in MS disease initiation.


Subject(s)
Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Adult , Aged , Biomarkers/blood , Cohort Studies , DNA Methylation , Female , Genetic Predisposition to Disease/genetics , Humans , Male , Middle Aged , Prodromal Symptoms , Twins, Monozygotic/genetics
17.
Clin Nucl Med ; 45(10): e447-e448, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32796248

ABSTRACT

PET targeting the translocator protein (TSPO) expression is an interesting approach to detect neuroinflammation, as TSPO is upregulated in activated macrophages and microglia. Considering the variable pathophysiology of multiple sclerosis (MS) variants, we compare TSPO PET using F-GE-180 in 3 different demyelinating diseases of the central nervous system: relapsing-remitting MS, tumefactive MS, and Baló's concentric sclerosis. Visualization of neuroinflammation and its PET patterns in addition to MRI may contribute to accurate distinction and monitoring of central nervous system demyelination.


Subject(s)
Carbazoles , Diffuse Cerebral Sclerosis of Schilder/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Positron-Emission Tomography , Receptors, GABA/metabolism , Diagnosis, Differential , Humans
18.
J Neuroinflammation ; 17(1): 196, 2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32563262

ABSTRACT

BACKGROUND: Neurological manifestations and the co-occurrence of multiple sclerosis (MS) have been reported in patients with autoinflammatory diseases (AID) and variants of the NLRP3-, MEFV-, or TNFRSF1A gene. However, type and frequency of neurological involvement are widely undetermined. METHODS: We assessed clinical characteristics of 151 (108 with MS) patients carrying NLRP3-, MEFV- and TNFRSF1A low-penetrance variants  from the Institute of Clinical Neuroimmunology. We evaluated demographic, genetic, and clinical features with a focus on central nervous system (CNS) involvement including magnetic resonance imaging (MRI) results and cerebrospinal fluid (CSF) data. The disease course of AID patients with MS was compared to a matched MS control group without mutations. RESULTS: The genetic distribution comprised 36 patients (23%) with NLRP3- and 66 patients (43%) with TNFRSF1A low-penetrance variants as well as 53 (34%) patients carrying pathogenic mutations or low-penetrance variants in the MEFV gene. MS patients displayed most frequently the R92Q TNFRSF1A variant (n = 51; 46%) followed by the Q703K NLRP3 variant (n = 15; 14%) and the E148Q substitution (n = 9; 8%) in the MEFV gene. The disease course of MS was not influenced by the genetic variants and did not differ from MS patients (n = 51) without mutations. AID patients without MS most frequently harbored MEFV mutations (n = 19, 43%) followed by NLRP3- (n = 17, 39%) and TNFRSF1A (n = 8, 18%) low-penetrance variants. Sixteen (36%) of them suffered from severe CNS involvement predominantly recurrent aseptic meningoencephalitis and optic neuritis accompanied by abnormal MRI and CSF results. Severe CNS inflammation was associated with the Q703K allele. Headache was a highly prevalent neurological symptom (up to 74%), irrespective of the underlying genetic variation. The NLRP3 cohort without MS more frequently exhibited affections of the cranial nerves (CN) (p = 0.0228) and motor symptoms (p = 0.0455). Elevated acute-phase reactants were detected in all patients, and fever episodes were present in up to 50%. Arthralgias were the most frequently identified constitutional symptom among all subgroups. CONCLUSIONS: Our data highlight the high prevalence of neurological manifestations, including concomitant MS, among NLRP3-, MEFV-, and TNFRSF1A low-penetrance variants. In particular, patients carrying the Q703K NLRP3 variant are at risk for severe CNS inflammation and CN affection.


Subject(s)
Familial Mediterranean Fever/genetics , Headache/genetics , Multiple Sclerosis/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Optic Neuritis/genetics , Pyrin/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Adult , Aged , Alleles , DNA Mutational Analysis , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Mutation , Penetrance , Phenotype , Young Adult
19.
J Clin Invest ; 129(11): 4758-4768, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31566584

ABSTRACT

Multiple sclerosis (MS) is a disabling disease of the CNS. Inflammatory features of MS include lymphocyte accumulations in the CNS and cerebrospinal fluid (CSF). The preclinical events leading to established MS are still enigmatic. Here we compared gene expression patterns of CSF cells from MS-discordant monozygotic twin pairs. Six "healthy" co-twins, who carry a maximal familial risk for developing MS, showed subclinical neuroinflammation (SCNI) with small MRI lesions. Four of these subjects had oligoclonal bands (OCBs). By single-cell RNA sequencing of 2752 CSF cells, we identified clonally expanded CD8+ T cells, plasmablasts, and, to a lesser extent, CD4+ T cells not only from MS patients but also from subjects with SCNI. In contrast to nonexpanded T cells, clonally expanded T cells showed characteristics of activated tissue-resident memory T (TRM) cells. The TRM-like phenotype was detectable already in cells from SCNI subjects but more pronounced in cells from patients with definite MS. Expanded plasmablast clones were detected only in MS and SCNI subjects with OCBs. Our data provide evidence for very early concomitant activation of 3 components of the adaptive immune system in MS, with a notable contribution of clonally expanded TRM-like CD8+ cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Lymphocyte Activation , Multiple Sclerosis/immunology , Twins, Monozygotic , Adult , Aged , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Female , Humans , Inflammation/cerebrospinal fluid , Inflammation/immunology , Inflammation/pathology , Male , Middle Aged , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/pathology , Risk Factors
20.
Front Immunol ; 10: 1189, 2019.
Article in English | MEDLINE | ID: mdl-31244828

ABSTRACT

Autoantibodies to myelin oligodendrocytes glycoprotein (MOG) are found in a fraction of patients with inflammatory demyelination and are detected with MOG-transfected cells. While the prototype anti-MOG mAb 8-18C5 and polyclonal anti-MOG responses from different mouse strains largely recognize the FG loop of MOG, the human anti-MOG response is more heterogeneous and human MOG-Abs recognizing different epitopes were found to be pathogenic. The aim of this study was to get further insight into details of antigen-recognition by human MOG-Abs focusing on the impact of glycosylation. MOG has one known N-glycosylation site at N31 located in the BC loop linking two beta-sheets. We compared the reactivity to wild type MOG with that toward two different mutants in which the neutral asparagine of N31 was mutated to negatively charged aspartate or to the neutral alanine. We found that around 60% of all patients (16/27) showed an altered reactivity to one or both of the mutations. We noted seven different patterns of recognition of the two glycosylation-deficient mutants by different patients. The introduced negative charge at N31 enhanced recognition in some, but reduced recognition in other patients. In 7/27 patients the neutral glycosylation-deficient mutant was recognized stronger. The folding of the extracellular domain of MOG with the formation of beta-sheets did not depend on its glycosylation as seen by circular dichroism. We determined the glycan structure of MOG produced in HEK cells by mass spectrometry. The most abundant glycoforms of MOG expressed in HEK cells are diantennary, contain a core fucose, an antennary fucose, and are decorated with α2,6 linked Neu5Ac, while details of the glycoforms of MOG in myelin remain to be identified. Together, we (1) increase the knowledge about heterogeneity of human autoantibodies to MOG, (2) show that the BC loop affects recognition in about 60% of the patients, (3) report that all patients recognized the unglycosylated protein backbone, while (4) in about 20% of the patients the attached sugar reduces autoantibody binding presumably via steric hindrance. Thus, a neutral glycosylation-deficient mutant of MOG might enhance the sensitivity to identify MOG-Abs.


Subject(s)
Antibody Specificity , Autoantibodies/immunology , Epitopes/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , Adult , Female , Glycosylation , HeLa Cells , Humans , Male , Protein Domains , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...