Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Invest ; 104(5): 100341, 2024 May.
Article in English | MEDLINE | ID: mdl-38280634

ABSTRACT

Ki-67 is a nuclear protein associated with proliferation, and a strong potential biomarker in breast cancer, but is not routinely measured in current clinical management owing to a lack of standardization. Digital image analysis (DIA) is a promising technology that could allow high-throughput analysis and standardization. There is a dearth of data on the clinical reliability as well as intra- and interalgorithmic variability of different DIA methods. In this study, we scored and compared a set of breast cancer cases in which manually counted Ki-67 has already been demonstrated to have prognostic value (n = 278) to 5 DIA methods, namely Aperio ePathology (Lieca Biosystems), Definiens Tissue Studio (Definiens AG), Qupath, an unsupervised immunohistochemical color histogram algorithm, and a deep-learning pipeline piNET. The piNET system achieved high agreement (interclass correlation coefficient: 0.850) and correlation (R = 0.85) with the reference score. The Qupath algorithm exhibited a high degree of reproducibility among all rater instances (interclass correlation coefficient: 0.889). Although piNET performed well against absolute manual counts, none of the tested DIA methods classified common Ki-67 cutoffs with high agreement or reached the clinically relevant Cohen's κ of at least 0.8. The highest agreement achieved was a Cohen's κ statistic of 0.73 for cutoffs 20% and 25% by the piNET system. The main contributors to interalgorithmic variation and poor cutoff characterization included heterogeneous tumor biology, varying algorithm implementation, and setting assignments. It appears that image segmentation is the primary explanation for semiautomated intra-algorithmic variation, which involves significant manual intervention to correct. Automated pipelines, such as piNET, may be crucial in developing robust and reproducible unbiased DIA approaches to accurately quantify Ki-67 for clinical diagnosis in the future.


Subject(s)
Breast Neoplasms , Image Processing, Computer-Assisted , Ki-67 Antigen , Humans , Ki-67 Antigen/analysis , Ki-67 Antigen/metabolism , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Reproducibility of Results , Image Processing, Computer-Assisted/methods , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Algorithms , Immunohistochemistry/methods
2.
Cancers (Basel) ; 13(1)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33375043

ABSTRACT

In this work, a novel proliferation index (PI) calculator for Ki67 images called piNET is proposed. It is successfully tested on four datasets, from three scanners comprised of patches, tissue microarrays (TMAs) and whole slide images (WSI), representing a diverse multi-centre dataset for evaluating Ki67 quantification. Compared to state-of-the-art methods, piNET consistently performs the best over all datasets with an average PI difference of 5.603%, PI accuracy rate of 86% and correlation coefficient R = 0.927. The success of the system can be attributed to several innovations. Firstly, this tool is built based on deep learning, which can adapt to wide variability of medical images-and it was posed as a detection problem to mimic pathologists' workflow which improves accuracy and efficiency. Secondly, the system is trained purely on tumor cells, which reduces false positives from non-tumor cells without needing the usual pre-requisite tumor segmentation step for Ki67 quantification. Thirdly, the concept of learning background regions through weak supervision is introduced, by providing the system with ideal and non-ideal (artifact) patches that further reduces false positives. Lastly, a novel hotspot analysis is proposed to allow automated methods to score patches from WSI that contain "significant" activity.

3.
Article in English | MEDLINE | ID: mdl-31632956

ABSTRACT

Automated image analysis tools for Ki67 breast cancer digital pathology images would have significant value if integrated into diagnostic pathology workflows. Such tools would reduce the workload of pathologists, while improving efficiency, and accuracy. Developing tools that are robust and reliable to multicentre data is challenging, however, differences in staining protocols, digitization equipment, staining compounds, and slide preparation can create variabilities in image quality and color across digital pathology datasets. In this work, a novel unsupervised color separation framework based on the IHC color histogram (IHCCH) is proposed for the robust analysis of Ki67 and hematoxylin stained images in multicentre datasets. An "overstaining" threshold is implemented to adjust for background overstaining, and an automated nuclei radius estimator is designed to improve nuclei detection. Proliferation index and F1 scores were compared between the proposed method and manually labeled ground truth data for 30 TMA cores that have ground truths for Ki67+ and Ki67- nuclei. The method accurately quantified the PI over the dataset, with an average proliferation index difference of 3.25%. To ensure the method generalizes to new, diverse datasets, 50 Ki67 TMAs from the Protein Atlas were used to test the validated approach. As the ground truth for this dataset is PI ranges, the automated result was compared to the PI range. The proposed method correctly classified 74 out of 80 TMA images, resulting in a 92.5% accuracy. In addition to these validations experiments, performance was compared to two color-deconvolution based methods, and to six machine learning classifiers. In all cases, the proposed work maintained more consistent (reproducible) results, and higher PI quantification accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...