Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(30): 26687-26700, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35936436

ABSTRACT

Magnesium and its alloys have attracted attention for biomedical implant materials in dental and orthopedic applications because of their biodegradability and similar properties to human bones. The very high rate of degradation in the physiological systems is, however, a major setback to their utilization. Chemical modification is one of the approaches adopted to enhance the corrosion resistance property of Mg and its alloys. In this work, NaOH and H2O2 were used as a pretreatment procedure to improve the corrosion resistance of the AZ31 Mg alloy in simulated body fluid (SBF). Advanced techniques such as dynamic electrochemical impedance spectroscopy (dynamic-EIS), atomic force microscopy, and optical profilometry were used in addition to the classical mass loss, hydrogen evolution, EIS, and polarization techniques to study the corrosion resistance property of the alloy in SBF for 30 h. Results obtained show that the surface treatment significantly enhanced the corrosion resistance property of the alloy. From dynamic-EIS at 30 h, the charge transfer resistance of the untreated AZ31 Mg alloy is 432.6 Ω cm2, whereas 822.7 and 2617.3 Ω cm2 are recorded for NaOH- and H2O2-treated surfaces, respectively. H2O2 is a better treatment reagent than NaOH. The mechanism of corrosion of both untreated and treated samples in the studied corrosive medium has been discussed.

2.
ACS Omega ; 7(14): 11929-11938, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35449899

ABSTRACT

Dynamic electrochemical impedance spectroscopy (dynamic EIS) has the capacity to track changes on surfaces in a changing corrosive system, an advantage it holds over classical EIS. We used the dynamic EIS approach to provide insight into the corrosion behavior of the AZ91D Mg alloy in simulated body fluid for 30 h at 25 °C. The results reveal that the impedance response of the alloy is influenced by the immersion time. Between 0 and 7 h, impedance with three time constants was obtained, whereas two-time-constant impedance spectra were obtained between 8 and 30 h of immersion. The results confirm the breakdown of the corrosion product at longer immersion times.

4.
Sci Rep ; 11(1): 8353, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33863992

ABSTRACT

The corrosion inhibition behavior of sodium nitrite (NaNO2) towards pure copper (99.95%) in simulated cooling water (SCW) was investigated by means of electrochemical impedance spectroscopy (EIS) and dynamic electrochemical impedance spectroscopy (DEIS). NaNO2 interferes with metal dissolution and reduce the corrosion rate through the formation or maintenance of inhibitive film on the metal surface. Surface morphologies illustrated that the surface homogeneity increased on adding sodium nitrite. Sodium nitrite's adsorption on copper surface followed the modified form of Langmuir, Freundlich and Frumkin isotherms. Physiosorption mode was involved in the corrosion protection. Electrochemical results revealed an corrosion resistance of copper increases on increasing the inhibitor concentration. The DEIS results indicated that copper corrosion mechanism could be hindered by 50% even after interval of 24 h by optimum concentration of sodium nitrite. The maximum inhibition was achieved with 2000 ppm of NaNO2. With this concentration, inhibition efficiency of up to 61.8% was achievable.

5.
Mater Sci Eng C Mater Biol Appl ; 93: 539-553, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30274087

ABSTRACT

A novel amphiphilic nitrone, N-phenyl-1-(4-((11-(pyridin-1-ium-1yl) undecanoyl) oxy)phenyl)methanimine oxide bromide (NP-1-4-11-PUOPMOB) has been synthesized from a fatty acid derivative as a starting material. Structural characterization of the new compound has been realized by spectroscopic techniques (FTIR, 1H NMR, and 13C NMR). The corrosion inhibition effect of the compound for St37 steel corrosion in 1 M HCl medium has been investigated using experimental (weight loss, electrochemical impedance spectroscopy, potentiodynamic polarization, dynamic electrochemical impedance spectroscopy) and theoretical approaches complemented by surface morphological examination using energy dispersive X-ray spectroscopy, scanning electron microscope, and atomic force spectroscopy. Results from both chemical and electrochemical techniques reveal that the presence of the nitrone in the acid solution impedes St37 steel corrosion. The inhibition efficiency obtained at 125 ppm and 150 ppm concentrations for all methods is found to be over 90%. NP-1-4-11-PUOPMOB behaves as a mixed type corrosion inhibitor according to the potentiodynamic polarization studies. The adsorption of NP-1-4-11-PUOPMOB molecules onto the metal surface follows Langmuir adsorption isotherm and the calculated Kads (equilibrium constant of the adsorption process) value reflects strong interaction. There is evidence of NP-1-4-11-PUOPMOB adsorption on the metal surface from SEM, EDAX, and AFM studies. Experimental and theoretical results are in good agreement.


Subject(s)
Models, Chemical , Nitrogen Oxides/chemistry , Nitrogen Oxides/chemical synthesis , Steel/chemistry , Corrosion , Hydrogen-Ion Concentration
6.
ACS Appl Mater Interfaces ; 10(33): 28112-28129, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30059617

ABSTRACT

The possibility of utilizing dextran as a green corrosion inhibitor for steel in strong acid environment was explore using weight loss, electrochemical (electrochemical impedance spectroscopy (EIS), electrochemical frequency modulation (EFM), potentiodynamic polarization (PDP), and linear polarization (LPR)) supported with surface analysis via scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) techniques. The effect of molecular weight, temperature, and modification on the inhibition efficiency of dextran was also studied. Results from all the applied techniques reveal that dextran exhibit moderate anticorrosion property toward St37-2 steel dissolution in 15% H2SO4 solution. Dextran with molecular weight of 100 000-200 000 g/mol (Dex 1) exhibited the highest inhibition efficiency of 51.38% at 25 °C. Based on PDP results, dextran behaved as a mixed type corrosion inhibitor. Inhibition efficiency of dextran varies inversely with molecular weight but directly with temperature. Two modification approaches, namely incorporation of silver nanoparticles (AgNPs) into dextran matrices and combination with 1 mM KI were adopted to enhance the inhibition efficiency of dextran and the approaches proved effective. The protective capability of Dex 1 has been upgraded from 51.38% to 86.82% by infusion of AgNPs and to 94.21% by combination with KI at 25 °C. Results from the study on the effect of temperature reveals that Dex 1 + KI mixture could synergistically offer 99.4% protection to St37-2 steel in 15% H2SO4 environment at 60 °C. Surface analysis results confirm the presence of additives molecules on the studied metal surface. XPS results disclose that AgNPs are in oxide form while iodide ions are in the form of triiodide and pentaiodide ions on the metal surface. Modified dextran is a promising candidate for application as corrosion inhibitor in acid induced corrosive environment.

7.
Carbohydr Polym ; 181: 43-55, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29253993

ABSTRACT

A green anticorrosive composite (GA-AgNPs) has been formulated for steel in 15% HCl and 15% H2SO4 media. Characterization of GA-AgNPs is achieved via FTIR, UV-vis, EDAX, and SEM. Gravimetric, electrochemical (EIS, EFM, DEIS, & TP), and surface assessment (SEM, EDAX, AFM, & XPS) techniques have been deployed in the anticorrosion studies. Results from all applied methods potray GA-AgNPs as effective anticorrosive agent. Inhibition is by adsorption mechanism and follows Langmuir isotherm. GA-AgNPs acts as mixed type inhibitor in 15% H2SO4 solution but as anodic type in 15% HCl solution. Results from surface techniques confirm adsorption of GA-AgNPs molecules on specimen surface. Oxides, hydroxides, carbonates, and sulphates (H2SO4 medium) or chlorides (HCl medium) are the corrosion products in the free corrodent according to XPS results. In the presence of composite, both ionic and neutral forms of GA-AgNPS are adsorbed. AgNPs are present on the surface in the form: Ag°, Ag2O, and AgO.

8.
Int J Biol Macromol ; 104(Pt A): 638-649, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28625837

ABSTRACT

The inhibitive performance of chitosan and silver nanoparticles - chitosan (AgNPs-Chi) composite towards St37 steel corrosion in 15% H2SO4 solution was studied using weight loss and electrochemical techniques in addition to surface morphological examination. Results obtained show that chitosan could fairly protect St37 steel surface by 45%. Inhibition efficiency above 94% has been achieved with AgNPs-Chi composite. AgNPs-Chi composite performs better at longer immersion time and elevated temperature. AgNPs-Chi retards both anodic and cathodic redox reactions. The mode of adsorption of AgNPs-Chi onto St37 surface has been described using Langmuir adsorption isotherm. Surface screening results ascertain the adsorption of AgNPs-Chi molecules on St37 surface.


Subject(s)
Chitosan/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Steel/chemistry , Sulfuric Acids/chemistry , Adsorption , Corrosion , Temperature
9.
ACS Appl Mater Interfaces ; 9(7): 6376-6389, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28112890

ABSTRACT

This study has been designed to boost the inhibition efficiency and stability of carboxymethyl cellulose (CMC) and this objective has been achieved by incorporating silver nanoparticles (AgNPs) generated in situ by reduction of AgNO3 using natural honey into CMC matrix. Characterization of CMC/AgNPs composite was done using transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible spectroscopy (UV-vis), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS). Weight loss, electrochemical (dynamic electrochemical impedance spectroscopy, electrochemical impedance spectroscopy, and potentiodynamic polarization) supported by surface assessment (SEM, atomic force microscope, and FTIR) techniques are deployed for the anticorrosion studies of CMC/AgNPs on St37 specimen in 15% H2SO4 medium. CMC/AgNPs performs better than CMC. At 25 °C, optimum inhibition efficiency of 93.94% is afforded by 1000 ppm of CMC/AgNPs from DEIS method. Inhibition efficiency of 96.37% has been achieved from weight loss method at 60 °C. CMC/AgNPs is found to retard both the anodic and cathodic reactions and the adsorption is explained using Langmuir adsorption isotherm. AFM and SEM graphics reveal smoother surface for St37 sample in the acid solution containing inhibitor than inthe solution without the inhibiting agent. FTIR and EDS results show that CMC/AgNPs molecules were adsorbed on the metal surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...