Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Bioengineering (Basel) ; 11(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38391623

ABSTRACT

Plantarflexor central drive is a promising biomarker of neuromotor impairment; however, routine clinical assessment is hindered by the unavailability of force measurement systems with integrated neurostimulation capabilities. In this study, we evaluate the accuracy of a portable, neurostimulation-integrated, plantarflexor force measurement system we developed to facilitate the assessment of plantarflexor neuromotor function in clinical settings. Two experiments were conducted with the Central Drive System (CEDRS). To evaluate accuracy, experiment #1 included 16 neurotypical adults and used intra-class correlation (ICC2,1) to test agreement of plantarflexor strength capacity measured with CEDRS versus a stationary dynamometer. To evaluate validity, experiment #2 added 26 individuals with post-stroke hemiparesis and used one-way ANOVAs to test for between-limb differences in CEDRS' measurements of plantarflexor neuromotor function, comparing neurotypical, non-paretic, and paretic limb measurements. The association between paretic plantarflexor neuromotor function and walking function outcomes derived from the six-minute walk test (6MWT) were also evaluated. CEDRS' measurements of plantarflexor neuromotor function showed high agreement with measurements made by the stationary dynamometer (ICC = 0.83, p < 0.001). CEDRS' measurements also showed the expected between-limb differences (p's < 0.001) in maximum voluntary strength (Neurotypical: 76.21 ± 13.84 ft-lbs., Non-paretic: 56.93 ± 17.75 ft-lbs., and Paretic: 31.51 ± 14.08 ft-lbs.), strength capacity (Neurotypical: 76.47 ± 13.59 ft-lbs., Non-paretic: 64.08 ± 14.50 ft-lbs., and Paretic: 44.55 ± 14.23 ft-lbs.), and central drive (Neurotypical: 88.73 ± 1.71%, Non-paretic: 73.66% ± 17.74%, and Paretic: 52.04% ± 20.22%). CEDRS-measured plantarflexor central drive was moderately correlated with 6MWT total distance (r = 0.69, p < 0.001) and distance-induced changes in speed (r = 0.61, p = 0.002). CEDRS is a clinician-operated, portable, neurostimulation-integrated force measurement platform that produces accurate measurements of plantarflexor neuromotor function that are associated with post-stroke walking ability.

2.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Article in English | MEDLINE | ID: mdl-37941227

ABSTRACT

Recent developments in soft wearable robots have shown promise for assistive and rehabilitative use-cases. For inflatable approaches, a major challenge in developing portable systems is finding a balance between portability, performance, and usability. In this paper, we present a textile-based robotic sleeve that can provide functional elbow flexion assistance and is compatible with a portable actuation unit (PAU). Flexion is driven by a curved textile actuator with internal pneumatic supports (IPS). We show that the addition of IPS improves torque generation and increases battery-powered actuations by 60%. We demonstrate that the device can provide enough torque throughout the ROM of the elbow joint for daily life assistance. Specifically, the device generates 13.5 Nm of torque at 90°. Experimental testing in five healthy individuals and two individuals with Amyotrophic Lateral Sclerosis (ALS) demonstrates its impact on wearer muscle activity and kinematics. The results with healthy subjects show that the device was able to reduce the bicep muscle activity by an average of 49.1±13.3% during static and dynamic exercises, 43.6±11.1% during simulated ADLs, and provided an assisted ROM of 134°±13°. Both ALS participants reported a reduced rate of perceived exertion during both static and dynamic tasks while wearing the device and had an average ROM of 115°±8°. Future work will explore other applications of the IPS and extend the approach to assisting multiple joints.


Subject(s)
Amyotrophic Lateral Sclerosis , Elbow Joint , Robotics , Wearable Electronic Devices , Humans , Elbow/physiology , Torque
3.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Article in English | MEDLINE | ID: mdl-37941290

ABSTRACT

Continuous monitoring of muscle coordination can provide valuable information regarding an individual's performance during physical activities. For example, changes in muscle coordination can indicate muscle fatigue during exhaustive exercise or can be used to track the rehabilitation progress of patients post-injury. Traditional methods to evaluate coordination often focus solely on measuring muscle activation with electromyography, ignoring timing changes of the resultant force produced by the activated muscle. Setups designed to evaluate force directly to study muscle coordination are often limited by either hyper-constrained settings or cost-prohibitive hardware. In this paper, we employ wearable, ultra-sensitive soft strain sensors that track muscle deformation for estimating changes in muscle coordination during cycling at different cadences and to exhaustion. The results were compared to muscle activation timing measured by electromyography and peak force timing measured by a cycle ergometer. We demonstrate that with an increase in cadence, the soft strain sensor and ergometer timing metrics align more closely than those measured by electromyography. We also demonstrate how muscle coordination is altered with the onset of fatigue during cycling to exhaustion.


Subject(s)
Muscle, Skeletal , Wearable Electronic Devices , Humans , Muscle, Skeletal/physiology , Electromyography , Muscle Fatigue/physiology , Exercise
4.
Sci Transl Med ; 15(681): eadd1504, 2023 02.
Article in English | MEDLINE | ID: mdl-36724237

ABSTRACT

Despite promising results in the rehabilitation field, it remains unclear whether upper limb robotic wearables, e.g., for people with physical impairments resulting from neurodegenerative disease, can be made portable and suitable for everyday use. We present a lightweight, fully portable, textile-based, soft inflatable wearable robot for shoulder elevation assistance that provides dynamic active support to the upper limbs. The technology is mechanically transparent when unpowered, can quantitatively assess free movement of the user, and adds only 150 grams of weight to each upper limb. In 10 individuals with amyotrophic lateral sclerosis (ALS) with different degrees of neuromuscular impairment, we demonstrated immediate improvement in the active range of motion and compensation for continuing physical deterioration in two individuals with ALS over 6 months. Along with improvements in movement, we show that this robotic wearable can improve functional activity without any training, restoring performance of basic activities of daily living. In addition, a reduction in shoulder muscle activity and perceived muscular exertion, coupled with increased endurance for holding objects, highlight the potential of this device to mitigate the impact of muscular fatigue for patients with ALS. These results represent a further step toward everyday use of assistive, soft, robotic wearables for the upper limbs.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Robotics , Wearable Electronic Devices , Humans , Robotics/methods , Arm , Activities of Daily Living
5.
Article in English | MEDLINE | ID: mdl-35925858

ABSTRACT

The force-generating capacity of skeletal muscle is an important metric in the evaluation and diagnosis of musculoskeletal health. Measuring changes in muscle force exertion is essential for tracking the progress of athletes during training, for evaluating patients' recovery after muscle injury, and also for assisting the diagnosis of conditions such as muscular dystrophy, multiple sclerosis, or Parkinson's disease. Traditional hardware for strength evaluation requires technical training for operation, generates discrete time points for muscle assessment, and is implemented in controlled settings. The ability to continuously monitor muscle force without restricting the range of motion or adapting the exercise protocol to suit specific hardware would allow for a richer dataset that can help unlock critical features of muscle health and strength evaluation. In this paper, we employ wearable, ultra-sensitive soft strain sensors for tracking changes in muscle deformation during contractions. We demonstrate the sensors' sensitivity to isometric contractions, as well as the sensors' capacity to track changes in peak torque over the course of an isokinetic fatiguing protocol for the knee extensors. The wearable soft system was able to efficiently estimate peak joint torque reduction caused by muscle fatigue (mean NRMSE = 0.15±0.03 ).


Subject(s)
Isometric Contraction , Wearable Electronic Devices , Humans , Isometric Contraction/physiology , Knee Joint/physiology , Muscle Fatigue/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Torque
6.
Front Neurorobot ; 15: 702031, 2021.
Article in English | MEDLINE | ID: mdl-34733149

ABSTRACT

Over the last decade underactuated, adaptive robot grippers and hands have received an increased interest from the robotics research community. This class of robotic end-effectors can be used in many different fields and scenarios with a very promising application being the development of prosthetic devices. Their suitability for the development of such devices is attributed to the utilization of underactuation that provides increased functionality and dexterity with reduced weight, cost, and control complexity. The most critical components of underactuated, adaptive hands that allow them to perform a broad set of grasp poses are appropriate differential mechanisms that facilitate the actuation of multiple degrees of freedom using a single motor. In this work, we focus on the design, analysis, and experimental validation of a four output geared differential, a series elastic differential, and a whiffletree differential that can incorporate a series of manual and automated locking mechanisms. The locking mechanisms have been developed so as to enhance the control of the differential outputs, allowing for efficient grasp selection with a minimal set of actuators. The differential mechanisms are applied to prosthetic hands, comparing them and describing the benefits and the disadvantages of each.

7.
Front Robot AI ; 8: 652760, 2021.
Article in English | MEDLINE | ID: mdl-33996927

ABSTRACT

Robot grasping in unstructured and dynamic environments is heavily dependent on the object attributes. Although Deep Learning approaches have delivered exceptional performance in robot perception, human perception and reasoning are still superior in processing novel object classes. Furthermore, training such models requires large, difficult to obtain datasets. This work combines crowdsourcing and gamification to leverage human intelligence, enhancing the object recognition and attribute estimation processes of robot grasping. The framework employs an attribute matching system that encodes visual information into an online puzzle game, utilizing the collective intelligence of players to expand the attribute database and react to real-time perception conflicts. The framework is deployed and evaluated in two proof-of-concept applications: enhancing the control of a robotic exoskeleton glove and improving object identification for autonomous robot grasping. In addition, a model for estimating the framework response time is proposed. The obtained results demonstrate that the framework is capable of rapid adaptation to novel object classes, based purely on visual information and human experience.

8.
Front Robot AI ; 7: 601274, 2020.
Article in English | MEDLINE | ID: mdl-33501363

ABSTRACT

Traditionally, the robotic end-effectors that are employed in unstructured and dynamic environments are rigid and their operation requires sophisticated sensing elements and complicated control algorithms in order to handle and manipulate delicate and fragile objects. Over the last decade, considerable research effort has been put into the development of adaptive, under-actuated, soft robots that facilitate robust interactions with dynamic environments. In this paper, we present soft, retractable, pneumatically actuated, telescopic actuators that facilitate the efficient execution of stable grasps involving a plethora of everyday life objects. The efficiency of the proposed actuators is validated by employing them in two different soft and hybrid robotic grippers. The hybrid gripper uses three rigid fingers to accomplish the execution of all the tasks required by a traditional robotic gripper, while three inflatable, telescopic fingers provide soft interaction with objects. This synergistic combination of soft and rigid structures allows the gripper to cage/trap and firmly hold heavy and irregular objects. The second, simplistic and highly affordable robotic gripper employs just the telescopic actuators, exhibiting an adaptive behavior during the execution of stable grasps of fragile and delicate objects. The experiments demonstrate that both grippers can successfully and stably grasp a wide range of objects, being able to exert significantly high contact forces.

9.
Front Neurorobot ; 13: 91, 2019.
Article in English | MEDLINE | ID: mdl-31787889

ABSTRACT

Adaptive robot hands are typically created by introducing structural compliance either in their joints (e.g., implementation of flexures joints) or in their finger-pads. In this paper, we present a series of alternative uses of structural compliance for the development of simple, adaptive, compliant and/or under-actuated robot grippers and hands that can efficiently and robustly execute a variety of grasping and dexterous, in-hand manipulation tasks. The proposed designs utilize only one actuator per finger to control multiple degrees of freedom and they retain the superior grasping capabilities of the adaptive grasping mechanisms even under significant object pose or other environmental uncertainties. More specifically, in this work, we introduce, discuss, and evaluate: (a) a design of pre-shaped, compliant robot fingers that adapts/conforms to the object geometry, (b) a hyper-adaptive finger-pad design that maximizes the area of the contact patches between the hand and the object, maximizing also grasp stability, and (c) a design that executes compliance adjustable manipulation tasks that can be predetermined by tuning the in-series compliance of the tendon routing system and by appropriately selecting the imposed tendon loads. The grippers are experimentally tested and their efficiency is validated using three different types of tests: (i) grasping tests that involve different everyday objects, (ii) grasp quality tests that estimate the contact area between the grippers and the objects grasped, and (iii) dexterous, in-hand manipulation experiments to evaluate the manipulation capabilities of the Compliance Adjustable Manipulation (CAM) hand. The devices employ mechanical adaptability to facilitate and simplify the efficient execution of robust grasping and dexterous, in-hand manipulation tasks.

10.
J Pediatr Rehabil Med ; 12(3): 305-312, 2019.
Article in English | MEDLINE | ID: mdl-31476183

ABSTRACT

Conventional knee-ankle-foot orthoses (KAFOs) are generally prescribed for children with lower limb muscle weakness and joint instabilities. The main function of KAFOs is to provide stability during gait by locking the knee in full extension. However, walking with the knee joint in a fully extended position requires excessive energy consumption, leading to early fatigue and inducing non-physiological gait patterns. A new generation of KAFOs was developed to allow free knee flexion during the swing phase and to lock the knee joint during the stance phase to provide the required stability. These are commonly labeled as stance-control knee-ankle-foot orthoses (SCKAFOs). Nevertheless, commercial SCKAFOs are not available for the pediatric population. Especially in early ages, children must frequently replace the orthosis due to their growth. Hence, the proposed design presents a solution for a SCKAFO with adjustable length adaptable to children's dimensions ranging from two to six years old.


Subject(s)
Orthotic Devices , Walking , Ankle , Child , Child, Preschool , Equipment Design , Foot Orthoses , Humans , Knee
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6224-6228, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947265

ABSTRACT

Soft, underactuated, and wearable robotic exo-gloves have received an increased interest over the last years. These devices can be used to improve the capabilities of healthy individuals or to assist people that suffer from neurological and musculoskeletal diseases. Despite the significant progress in the field, most existing solutions are still heavy and expensive, they require an external power source to operate, and they are not wearable. In this paper, we focus on the development of an affordable, underactuated, tendon-driven, wearable exo-glove equipped with a novel four-output differential mechanism that provides grasping capabilities enhancement to the user. The device and the differential mechanism are experimentally tested and assessed using three different types of experiments: i) grasping tests that involve different everyday objects, ii) force exertion capability tests that assess the fingertip forces for different types of grasps, and iii) tendon tension tests that estimate the maximum tendon tension that can be obtained by employing the proposed differential. The device considerably improves the grasping capabilities of the user with a weight of 690 g and an operation autonomy of a whole day.


Subject(s)
Exoskeleton Device , Hand , Tendons , Wearable Electronic Devices , Hand Strength , Humans
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6656-6660, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947368

ABSTRACT

Adaptive, tendon-driven and affordable prosthetic devices have received an increased interest over the last decades. Prosthetic devices range from body-powered solutions to fully actuated systems. Despite the significant progress in the field, most existing solutions are expensive, heavy, and bulky, or they cannot be used for partial hand amputations. In this paper, we focus on the development of adaptive, tendon-driven, glove-based, affordable prostheses for partial hand amputations and we propose two compact and lightweight devices (a body powered and a motor driven version). The efficiency of the devices is experimentally validated and their performance is evaluated using two different types of tests: i) grasping tests that involve different everyday objects and ii) tests that assess the force exertion capabilities of the proposed prostheses.


Subject(s)
Artificial Limbs , Hand , Adaptation, Physiological , Amputation, Surgical , Hand Strength , Humans , Movement , Prosthesis Design , Tendons
SELECTION OF CITATIONS
SEARCH DETAIL
...