Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Psychophysiology ; : e14584, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602055

ABSTRACT

There is a growing interest in the clinical application of transcutaneous auricular vagus nerve stimulation (taVNS). However, its effect on cortical excitability, and whether this is modulated by stimulation duration, remains unclear. We evaluated whether taVNS can modify excitability in the primary motor cortex (M1) in middle-aged and older adults and whether the stimulation duration moderates this effect. In addition, we evaluated the blinding efficacy of a commonly reported sham method. In a double-blinded randomized cross-over sham-controlled study, 23 healthy adults (mean age 59.91 ± 6.87 years) received three conditions: active taVNS for 30 and 60 min and sham for 30 min. Single and paired-pulse transcranial magnetic stimulation was delivered over the right M1 to evaluate motor-evoked potentials. Adverse events, heart rate and blood pressure measures were evaluated. Participant blinding effectiveness was assessed via guesses about group allocation. There was an increase in short-interval intracortical inhibition (F = 7.006, p = .002) and a decrease in short-interval intracortical facilitation (F = 4.602, p = .014) after 60 min of taVNS, but not 30 min, compared to sham. taVNS was tolerable and safe. Heart rate and blood pressure were not modified by taVNS (p > .05). Overall, 96% of participants detected active stimulation and 22% detected sham stimulation. taVNS modifies cortical excitability in M1 and its effect depends on stimulation duration in middle-aged and older adults. taVNS increased GABAAergic inhibition and decreased glutamatergic activity. Sham taVNS protocol is credible but there is an imbalance in beliefs about group allocation.

2.
Disabil Rehabil ; : 1-31, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38362860

ABSTRACT

PURPOSE: Transcutaneous auricular vagus nerve stimulation (taVNS) is an emerging non-invasive neuromodulation therapy. This study aimed to explore the therapeutic use of taVNS, optimal stimulation parameters, effective sham protocols, and safety. METHODS: A scoping review was conducted. Five databases and grey literature were searched. The data extracted included stimulation parameters, adverse events (AEs), and therapeutic effects on clinical outcomes. RESULTS: 109 studies were included. taVNS was used across 21 different clinical populations, most commonly in psychiatric, cardiac, and neurological disorders. Overall, 2,214 adults received active taVNS and 1,017 received sham taVNS. Reporting of stimulation parameters was limited and inconsistent. taVNS appeared to have a favourable therapeutic effect across a wide range of clinical populations with varied parameters. Three sham protocols were reported but their effectiveness was documented in only two of the 54 sham-controlled studies. Most reported adverse events were localised to stimulation site. CONCLUSION: There is growing evidence for taVNS therapeutic effect. taVNS appears safe and tolerable. Sham protocols need evaluation. Standardised and comprehensive reporting of both stimulation parameters and adverse events is required. Two different questionnaires have been proposed to evaluate adverse events and the effectiveness of sham methods in blinding participants.


Transcutaneous auricular vagus nerve stimulation (taVNS) showed therapeutic effect across a wide range of clinical populations including depression, epilepsy, and strokeThere is a preliminary indication that daily/weekly dose and overall duration of treatment are important to show therapeutic effectivenessWhen using taVNS as an intervention, the questionnaires proposed in this review should be used to evaluate blinding effectiveness and adverse events.

3.
J Stroke Cerebrovasc Dis ; 31(7): 106494, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35472653

ABSTRACT

OBJECTIVE: Interhemispheric inhibition is an important cortical mechanism to support motor control. Altered interhemispheric inhibition has been the target of neuromodulation interventions. This systematic review investigated the evidence for altered interhemispheric inhibition in adults with unilateral neurological conditions: stroke, amyotrophic lateral sclerosis, cerebral palsy, complex regional pain syndrome, traumatic brain injury, and cerebral palsy METHODS: We pre-registered the protocol and followed PRISMA guidelines. Five databases were systematically searched to identify studies reporting interhemispheric inhibition measures in unilateral neurological conditions and healthy controls. Data were grouped according to the measure (ipsilateral silent period and dual-coil), stimulated hemisphere, and stage of the condition (subacute and chronic). RESULTS: 1372 studies were identified, of which 14 were included (n = 226 adults with stroke and 161 age-matched controls). Ipsilateral silent period-duration was longer in people with stroke than in controls (stimulation of dominant hemisphere) regardless of stroke stage. Motor evoked potential was less suppressed in people with sub-acute stroke (stimulation of the unaffected hemisphere) than controls (stimulation of dominant hemisphere) and this reversed in chronic stroke. CONCLUSION: Detection of altered interhemispheric inhibition appears to be dependent on the measure of interhemispheric inhibition and the stage of recovery. SIGNIFICANCE: Rebalancing interhemispheric inhibition using neuromodulation is considered a promising line of treatment for stroke rehabilitation. Our results did not find compelling evidence to support consistent alterations in interhemispheric inhibition in adults with stroke.


Subject(s)
Cerebral Palsy , Motor Cortex , Stroke Rehabilitation , Stroke , Adult , Evoked Potentials, Motor/physiology , Functional Laterality/physiology , Humans , Stroke/diagnosis , Stroke/therapy , Stroke Rehabilitation/methods , Transcranial Magnetic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...