Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 37(23): 5608-5619, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28473649

ABSTRACT

Stereopsis is the primary cue underlying our ability to make fine depth judgments. In adults, depth discriminations are supported largely by relative rather than absolute binocular disparity, and depth is perceived primarily for horizontal rather than vertical disparities. Although human infants begin to exhibit disparity-specific responses between 3 and 5 months of age, it is not known how relative disparity mechanisms develop. Here we show that the specialization for relative disparity is highly immature in 4- to 6-month-old infants but is adult-like in 4- to 7-year-old children. Disparity-tuning functions for horizontal and vertical disparities were measured using the visual evoked potential. Infant relative disparity thresholds, unlike those of adults, were equal for vertical and horizontal disparities. Their horizontal disparity thresholds were a factor of ∼10 higher than adults, but their vertical disparity thresholds differed by a factor of only ∼4. Horizontal relative disparity thresholds for 4- to 7-year-old children were comparable with those of adults at ∼0.5 arcmin. To test whether infant immaturity was due to spatial limitations or insensitivity to interocular correlation, highly suprathreshold horizontal and vertical disparities were presented in alternate regions of the display, and the interocular correlation of the interdigitated regions was varied from 0% to 100%. This manipulation regulated the availability of coarse-scale relative disparity cues. Adult and infant responses both increased with increasing interocular correlation by similar magnitudes, but adult responses increased much more for horizontal disparities, further evidence for qualitatively immature stereopsis based on relative disparity at 4-6 months of age.SIGNIFICANCE STATEMENT Stereopsis, our ability to sense depth from horizontal image disparity, is among the finest spatial discriminations made by the primate visual system. Fine stereoscopic depth discriminations depend critically on comparisons of disparity relationships in the image that are supported by relative disparity cues rather than the estimation of single, absolute disparities. Very young human and macaque infants are sensitive to absolute disparity, but no previous study has specifically studied the development of relative disparity sensitivity, a hallmark feature of adult stereopsis. Here, using high-density EEG recordings, we show that 4- to 6-month-old infants display both quantitative and qualitative response immaturities for relative disparity information. Relative disparity responses are adult-like no later than 4-7 years of age.


Subject(s)
Aging/physiology , Depth Perception/physiology , Nerve Net/physiology , Vision Disparity/physiology , Visual Cortex/physiology , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Reproducibility of Results , Sensitivity and Specificity , Task Performance and Analysis , Young Adult
2.
Vision Res ; 133: 12-20, 2017 04.
Article in English | MEDLINE | ID: mdl-27826013

ABSTRACT

Contrast sensitivity is regulated by neural mechanisms that flexibly adjust responsiveness to optimize stimulus encoding across different environments. Here we studied the developmental status of gain control mechanisms in school-age children (5-17years) and adults using a visual masking paradigm. A variable contrast, spatially random 2-D noise test pattern was masked by the presence of a superimposed independent noise pattern presented at 0, 12 and 40% contrast. Frequency-tagged steady state visual evoked potentials were used to separately record responses to the test (5.14Hz) and the mask (7.2Hz). By incrementally increasing the test contrast we measured contrast response functions for each mask contrast. The unmasked contrast response functions were largely similar in shape across age, but peak amplitude was higher in the children. Masking shifted the contrast response function rightward on the contrast axis in both the adults and older children, elevating contrast thresholds by a similar factor across age. However, in younger children, masking resulted in a change in the slope of the contrast response function. These findings suggest that immaturity in the contrast normalization process persists until approximately 11years of age.


Subject(s)
Child Development/physiology , Contrast Sensitivity/physiology , Pattern Recognition, Visual/physiology , Adolescent , Child , Child, Preschool , Evoked Potentials, Visual/physiology , Female , Humans , Male , Perceptual Masking/physiology , Sensory Thresholds/physiology , Visual Cortex/physiology
3.
Annu Rev Vis Sci ; 1: 569-594, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-28532379

ABSTRACT

The play of light on the retina contains multiple sources of information about the three-dimensional (3D) structure of the world. Some of the best information is derived from differencing operations that act on the images that result from the two eyes' laterally displaced vantage points. Other information is available in systematic retinal patterns of local texture and motion cues. This article describes what is currently known about the development of sensitivity to these binocular and monocular cues for depth in human infants, and it places the results in the context of what is known about the underlying neural mechanisms from work in nonhuman primates and human neuroimaging studies.

4.
Iperception ; 4(2): 98-100, 2013.
Article in English | MEDLINE | ID: mdl-23755354

ABSTRACT

In everyday scenes, the illuminant can vary spatially in chromaticity and luminance, and change over time (e.g. sunset). Such variation generates dramatic image effects too complex for any contemporary machine vision system to overcome, yet human observers are remarkably successful at inferring object properties separately from lighting, an ability linked with estimation and tracking of light field parameters. Which information does the visual system use to infer light field dynamics? Here, we specifically ask whether color contributes to inferred light source motion. Observers viewed 3D surfaces illuminated by an out-of-view moving collimated source (sun) and a diffuse source (sky). In half of the trials, the two sources differed in chromaticity, thereby providing more information about motion direction. Observers discriminated light motion direction above chance, and only the least sensitive observer benefited slightly from the added color information, suggesting that color plays only a very minor role for inferring light field dynamics.

5.
PLoS Comput Biol ; 9(1): e1002873, 2013.
Article in English | MEDLINE | ID: mdl-23358106

ABSTRACT

A key hypothesis in sensory system neuroscience is that sensory representations are adapted to the statistical regularities in sensory signals and thereby incorporate knowledge about the outside world. Supporting this hypothesis, several probabilistic models of local natural image regularities have been proposed that reproduce neural response properties. Although many such physiological links have been made, these models have not been linked directly to visual sensitivity. Previous psychophysical studies of sensitivity to natural image regularities focus on global perception of large images, but much less is known about sensitivity to local natural image regularities. We present a new paradigm for controlled psychophysical studies of local natural image regularities and compare how well such models capture perceptually relevant image content. To produce stimuli with precise statistics, we start with a set of patches cut from natural images and alter their content to generate a matched set whose joint statistics are equally likely under a probabilistic natural image model. The task is forced choice to discriminate natural patches from model patches. The results show that human observers can learn to discriminate the higher-order regularities in natural images from those of model samples after very few exposures and that no current model is perfect for patches as small as 5 by 5 pixels or larger. Discrimination performance was accurately predicted by model likelihood, an information theoretic measure of model efficacy, indicating that the visual system possesses a surprisingly detailed knowledge of natural image higher-order correlations, much more so than current image models. We also perform three cue identification experiments to interpret how model features correspond to perceptually relevant image features.


Subject(s)
Sensory Thresholds , Visual Perception , Humans , Models, Theoretical
6.
J Vis ; 10(9): 14, 2010 Nov 24.
Article in English | MEDLINE | ID: mdl-21106676

ABSTRACT

We examine human ability to detect changes in scene lighting. Thirteen observers viewed three-dimensional rendered scenes stereoscopically. Each scene consisted of a randomly generated three-dimensional "Gaussian bump" surface rendered under a combination of collimated and diffuse light sources. During each trial, the collimated source underwent a small, quick change of position in one of four directions. The observer's task was to classify the direction of the lighting change. All observers were above chance in performing the task. We developed a model that combined two sources of information, a shape map and a shading map, to predict lighting change direction. We used this model to predict patterns of errors both across observers and across scenes differing in shape. We found that errors in estimating lighting direction were primarily the result of errors in representing surface shape. We characterized the surface features that affected performance in the classification task.


Subject(s)
Contrast Sensitivity/physiology , Depth Perception/physiology , Lighting , Models, Neurological , Vision, Binocular/physiology , Form Perception/physiology , Humans , Imaging, Three-Dimensional , Motion Perception/physiology , Normal Distribution , Photic Stimulation/methods , Signal Detection, Psychological/physiology
7.
J Vis ; 10(9): 1, 2010 Jul 16.
Article in English | MEDLINE | ID: mdl-20884599

ABSTRACT

We report two experiments demonstrating that (1) observers are sensitive to information about changes in the light field not captured by local scene statistics and that (2) they can use this information to enhance detection of changes in surface albedo. Observers viewed scenes consisting of matte surfaces at many orientations illuminated by a collimated light source. All surfaces were achromatic, all lights neutral. In the first experiment, observers attempted to discriminate small changes in direction of the collimated light source (light transformations) from matched changes in the albedos of all surfaces (non-light transformations). Light changes and non-light changes shared the same local scene statistics and edge ratios, but the latter were not consistent with any change in direction to the collimated source. We found that observers could discriminate light changes as small as 5 degrees with sensitivity d' > 1 and accurately judge the direction of change. In a second experiment, we measured observers' ability to detect a change in the surface albedo of an isolated surface patch during either a light change or a surface change. Observers were more accurate in detecting isolated albedo changes during light changes. Measures of sensitivity d' were more than twice as great.


Subject(s)
Lighting , Photic Stimulation/methods , Surface Properties , Vision Disparity/physiology , Visual Perception/physiology , Humans , Models, Theoretical , Orientation/physiology , Sensory Thresholds
SELECTION OF CITATIONS
SEARCH DETAIL
...