Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
J Phys Chem C Nanomater Interfaces ; 114(16): 7480-7488, 2010 Apr 29.
Article in English | MEDLINE | ID: mdl-24839505

ABSTRACT

This study involves two aspects of our investigations of plasmonics-active systems: (i) theoretical and simulation studies and (ii) experimental fabrication of plasmonics-active nanostructures. Two types of nanostructures are selected as the model systems for their unique plasmonics properties: (1) nanoparticles and (2) nanowires on substrate. Special focus is devoted to regions where the electromagnetic field is strongly concentrated by the metallic nanostructures or between nanostructures. The theoretical investigations deal with dimers of nanoparticles and nanoshells using a semi-analytical method based on a multipole expansion (ME) and the finite-element method (FEM) in order to determine the electromagnetic enhancement, especially at the interface areas of two adjacent nanoparticles. The experimental study involves the design of plasmonics-active nanowire arrays on substrates that can provide efficient electromagnetic enhancement in regions around and between the nanostructures. Fabrication of these nanowire structures over large chip-scale areas (from a few millimeters to a few centimeters) as well as FDTD simulations to estimate the EM fields between the nanowires are described. The application of these nanowire chips using surface-enhanced Raman scattering (SERS) for detection of chemicals and labeled DNA molecules is described to illustrate the potential of the plasmonics chips for sensing.

3.
Scanning ; 31(4): 139-46, 2009.
Article in English | MEDLINE | ID: mdl-19670460

ABSTRACT

Fabrication of metallic Au nanopillars and linear arrays of Au-containing nanodots for plasmonic waveguides is reported in this article by two different processes-focused ion beam (FIB) milling of deposited thin films and electron beam-induced deposition (EBID) of metallic nanostructures from an organometallic precursor gas. Finite difference time domain (FDTD) modeling of electromagnetic fields around metallic nanostructures was used to predict the optimal size and spacing between nanostructures useful for plasmonic waveguides. Subsequently, a multi-step FIB fabrication method was developed for production of metallic nanorods and nanopillars of the size and geometry suggested by the results of the FDTD simulations. Nanostructure fabrication was carried out on planar substrates including Au-coated glass, quartz, and mica slides as well as cleaved 4-mode optical fibers. In the second fabrication process, EBID was utilized for the development of similar nanostructures on planar Indium Tin Oxide and Titanium-coated glass substrates. Each method allows formation of nanostructures such that the plasmon resonances associated with the nanostructures could be engineered and precisely controlled by controlling the nanostructure size and shape. Linear arrays of low aspect ratio nanodot structures ranging in diameter between 50-70 nm were fabricated using EBID. Preliminary dark field optical microscopy demonstrates differences in the plasmonic response of the fabricated structures.

4.
Opt Express ; 17(12): 9688-703, 2009 Jun 08.
Article in English | MEDLINE | ID: mdl-19506618

ABSTRACT

This paper describes a comparative study of finite-difference time-domain (FDTD) and analytical evaluations of electromagnetic fields in the vicinity of dimers of metallic nanospheres of plasmonics-active metals. The results of these two computational methods, to determine electromagnetic field enhancement in the region often referred to as "hot spots" between the two nanospheres forming the dimer, were compared and a strong correlation observed for gold dimers. The analytical evaluation involved the use of the spherical-harmonic addition theorem to relate the multipole expansion coefficients between the two nanospheres. In these evaluations, the spacing between two nanospheres forming the dimer was varied to obtain the effect of nanoparticle spacing on the electromagnetic fields in the regions between the nanostructures. Gold and silver were the metals investigated in our work as they exhibit substantial plasmon resonance properties in the ultraviolet, visible, and near-infrared spectral regimes. The results indicate excellent correlation between the two computational methods, especially for gold nanosphere dimers with only a 5-10% difference between the two methods. The effect of varying the diameters of the nanospheres forming the dimer, on the electromagnetic field enhancement, was also studied.


Subject(s)
Models, Theoretical , Nanospheres/chemistry , Surface Plasmon Resonance/methods , Light , Scattering, Radiation
5.
Nanobiotechnology ; 3(3-4): 164-171, 2007 Dec.
Article in English | MEDLINE | ID: mdl-23976888

ABSTRACT

This paper describes the fabrication of gold nanopillar and nanorod arrays and theoretical calculations of electromagnetic fields (EMFs) around ordered arrangements of these nanostructures. The EMFs of both single nanopillars and di-mers of nanopillars - having nanoscale gaps between the two adjacent nanopillars forming the di-mers - are simulated in this work by employing the Finite Difference Time Domain (FDTD) method. In the case of simulations for di-mers of nanopillars, the nano-scale gaps between the nanopillars are varied between 5 nm and 20 nm and calculations of the electromagnetic fields in the vicinity of the nanopillars and in the gaps between the nanopillars were carried out. Fabrication of gold nanopillars in a controlled manner for forming SERS substrates involves focused ion beam (FIB) milling. The nanostructures were fabricated on gold-coated silica, mica, and quartz planar substrates as well as on gold-coated tips of four mode and multimode silica optical fibers.

SELECTION OF CITATIONS
SEARCH DETAIL
...