Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; 32(5-6): 551-60, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21877536

ABSTRACT

Conservative particulate fluorescent tracers (e.g. luminophores and microspheres) are commonly used in a wide range of sediment transport studies. Traditionally, their spatial redistribution is estimated by counting them in sediments under ultraviolet light (e.g. by epifluorescence microscopy), a time-consuming but effective method. While alternative methods have recently been developed (e.g. photodetection, digital image analyses), this 'classical' counting method remains the most commonly used. This article describes an alternative procedure for measuring the concentration of fluorescent tracers (here, microspheres) using a microplate fluorimeter. This technique enables simultaneous analysis of numerous samples while reducing the sediment preparation and quantification time. After a calibration step from sediment samples with known microsphere content, the method was validated by comparing results from the epifluorescence microscopy method. Different adjustments were also reported, as well as application examples. The different calibration tests showed high linear relationships between the microsphere concentration of sediment samples and the measured fluorimetric intensities (R2-0.99) with a detection limit of 6%. In comparison with the previously used method, very similar results were obtained, as illustrated in recent studies using both luminophores and microspheres. The rapid and reliable method proposed here will enable increasingly complex experiments to be performed with less time-consuming qualitative analyses.


Subject(s)
Fluorometry/methods , Geologic Sediments/chemistry , Microspheres
2.
J Microsc ; 242(1): 15-25, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21118226

ABSTRACT

In this study, a new technique for three-dimensional imaging of biofilm within porous media using X-ray computed microtomography is presented. Due to the similarity in X-ray absorption coefficients for the porous media (plastic), biofilm and aqueous phase, an X-ray contrast agent is required to image biofilm within the experimental matrix using X-ray computed tomography. The presented technique utilizes a medical suspension of barium sulphate to differentiate between the aqueous phase and the biofilm. Potassium iodide is added to the suspension to aid in delineation between the biofilm and the experimental porous medium. The iodide readily diffuses into the biofilm while the barium sulphate suspension remains in the aqueous phase. This allows for effective differentiation of the three phases within the experimental systems utilized in this study. The behaviour of the two contrast agents, in particular of the barium sulphate, is addressed by comparing two-dimensional images of biofilm within a pore network obtained by (1) optical visualization and (2) X-ray absorption radiography. We show that the contrast mixture provides contrast between the biofilm, the aqueous-phase and the solid-phase (beads). The imaging method is then applied to two three-dimensional packed-bead columns within which biofilm was grown. Examples of reconstructed images are provided to illustrate the effectiveness of the method. Limitations and applications of the technique are discussed. A key benefit, associated with the presented method, is that it captures a substantial amount of information regarding the topology of the pore-scale transport processes. For example, the quantification of changes in porous media effective parameters, such as dispersion or permeability, induced by biofilm growth, is possible using specific upscaling techniques and numerical analysis. We emphasize that the results presented here serve as a first test of this novel approach; issues with accurate segmentation of the images, optimal concentrations of contrast agents and the potential need for use of synchrotron radiation sources need to be addressed before the method can be used for precise quantitative analysis of biofilm geometry in porous media.


Subject(s)
Biofilms , Imaging, Three-Dimensional/methods , X-Ray Microtomography , Contrast Media , Image Processing, Computer-Assisted , Porosity , Research Design
3.
Ecotoxicol Environ Saf ; 73(3): 222-30, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20036006

ABSTRACT

Contaminant loadings to the Venice Lagoon peaked from 1950s-1980s and although they have since declined, contaminant concentrations remain elevated in sediment and seafood. In order to identify the relative importance of contaminant sources, inter-media exchange and removal pathways, a modified 10-segment fugacity/aquivalence-based model was developed for octachlorodibenzodioxin/furan (OCDD/F), PCB-180, Pb and Cu in the Venice Lagoon. Results showed that in-place pollution nearby the industrial area, current industrial discharges, and tributary loadings were the main sources of contaminants to the lagoon, with negligible contributions from the atmosphere. The fate of these contaminants was governed by sediment-water exchange with simultaneous advective transport by water circulation. Contaminants circulated amongst the northern and central basins with a small fraction reaching the far southern basin and the Chioggia inlet. As a consequence, we estimated limited contaminant transfer to the Adriatic Sea, trapping the majority of contaminants in the sediment in this "average" circulation scenario which does not account for periodic flooding events.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Water Movements , Water Pollutants, Chemical/analysis , Finite Element Analysis , Furans/analysis , Italy , Mediterranean Sea , Metals, Heavy/analysis , Polychlorinated Biphenyls/analysis , Polychlorinated Dibenzodioxins/analogs & derivatives , Polychlorinated Dibenzodioxins/analysis , Seawater/chemistry
4.
Ecotoxicol Environ Saf ; 73(3): 231-9, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19493571

ABSTRACT

A Monte Carlo analysis is used to quantify environmental parametric uncertainty in a multi-segment, multi-chemical model of the Venice Lagoon. Scientific knowledge, expert judgment and observational data are used to formulate prior probability distributions that characterize the uncertainty pertaining to 43 environmental system parameters. The propagation of this uncertainty through the model is then assessed by a comparative analysis of the moments (central tendency, dispersion) of the model output distributions. We also apply principal component analysis in combination with correlation analysis to identify the most influential parameters, thereby gaining mechanistic insights into the ecosystem functioning. We found that modeled concentrations of Cu, Pb, OCDD/F and PCB-180 varied by up to an order of magnitude, exhibiting both contaminant- and site-specific variability. These distributions generally overlapped with the measured concentration ranges. We also found that the uncertainty of the contaminant concentrations in the Venice Lagoon was characterized by two modes of spatial variability, mainly driven by the local hydrodynamic regime, which separate the northern and central parts of the lagoon and the more isolated southern basin. While spatial contaminant gradients in the lagoon were primarily shaped by hydrology, our analysis also shows that the interplay amongst the in-place historical pollution in the central lagoon, the local suspended sediment concentrations and the sediment burial rates exerts significant control on the variability of the contaminant concentrations. We conclude that the probabilistic analysis presented herein is valuable for quantifying uncertainty and probing its cause in over-parameterized models, while some of our results can be used to dictate where additional data collection efforts should focus on and the directions that future model refinement should follow.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Seawater/chemistry , Water Movements , Water Pollutants, Chemical/analysis , Environmental Monitoring/statistics & numerical data , Geologic Sediments/chemistry , Italy , Mediterranean Sea , Monte Carlo Method , Principal Component Analysis , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...