Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(22): 15173-15182, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37222473

ABSTRACT

We report on photoelectron spectra of SiO2 nanoparticles (d = 157 ± 6 nm) above the Si 2p threshold in the photon energy range 118-248 eV with electron kinetic energy 10-140 eV and analyze the photoelectron yield as a function of photon energy. Comparison of the experimental results with Monte-Carlo simulations on electron transport allows us to quantify the inelastic mean-free path and mean escape depth of photoelectrons in the nanoparticle samples. The influence of the nanoparticle geometry and electron elastic scattering on photoelectron yields is highlighted. The results show that the previously proposed direct proportionality of the photoelectron signal to the inelastic mean-free path or the mean escape depth does not hold for photoelectron kinetic energies below 30 eV due to the strong influence of electron elastic scattering. The present results deviate for photoelectron kinetic energies below 30 eV from the previously proposed direct proportionality of the photoelectron signal to the inelastic mean-free path or the mean escape depth, which is the result of a strong influence of electron elastic scattering. The presented inelastic mean-free paths and mean escape depths appear to be useful for the quantitative interpretation of photoemission experiments on nanoparticles and for modeling of the experimental results.

2.
Phys Chem Chem Phys ; 21(23): 12130-12138, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31140488

ABSTRACT

We report on asymmetric ion emission of size-selected NaCl nanoparticles (d = 100-600 nm) ionized by intense femtosecond laser pulses (λ = 800 nm, peak intensity ∼1013 W cm-2). Velocity map imaging indicates that a higher ion yield is observed in the propagation direction of the laser pulses than in the opposite direction. This asymmetric ion emission is found to be size-dependent and increases with particle size. This pronounced size dependence is interpreted in terms of discrete dipole simulations of the internal electric field in the nanoparticles, which reveal that the internal field is enhanced in the forward propagation direction of the laser pulses, occurring for nanoparticles >100 nm. The ion emission asymmetry is further found to depend on the peak intensity of the laser radiation. Nanoparticles of 100 nm show a symmetric distribution of ion emission, while the ion emission for 600 nm particles is found to become increasingly symmetric as the peak intensity is increased. In addition to single pulse ionization experiments, we explore the angular distribution of ion emission of resonantly heated NaCl nanoparticles using a pump-probe setup. Here, ion emission is found to be more symmetric for resonantly heated nanoparticles than for single pulse excitation. These differences are explained by the absorption mechanism, where the probe pulse in a dual pulse experiment can be efficiently absorbed by plasmonic excitation for suitable delays between both laser pulses.

SELECTION OF CITATIONS
SEARCH DETAIL
...