Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 8330, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594287

ABSTRACT

Predicted climate warming and prolonged droughts pose a threat to the soil structure as organic carbon losses weaken the stability of soil aggregates. Well-structured soils are important for storage and movement of water, solutes, and air, the development of plant roots, as habitat for soil organisms, and the microbial activity. Structural stability is measured in terms of hydro-mechanical properties. This study compares effects of amorphous silica with those of organic carbon on stability parameters during drying of aggregates from relatively finer- and coarser-textured soils. Silica amendment enhanced the positive effect of organic carbon on structural stability in terms of the tensile strength. Synergistic effects between silica and organic carbon in soil colloids appear to dynamically alter aggregate density and friability (i.e., ability to crumble) during drying. Silica together with organic carbon could help soil management to reduce negative effects of predicted prolonged droughts on soil structure and stability.

2.
J Contam Hydrol ; 104(1-4): 90-106, 2009 Feb 16.
Article in English | MEDLINE | ID: mdl-19019490

ABSTRACT

Lignitic mine soils represent a typical two-scale dual-porosity medium consisting of a technogenic mixture of overburden sediments that include lignitic components as dust and as porous fragments embedded within a mostly coarse-textured matrix. Flow and transport processes in such soils are not sufficiently understood to predict the course of soil reclamation or of mine drainage. The objective of this contribution is to identify the most appropriate conceptual model for describing small-scale heterogeneity effects on flow on the basis of the physical structure of the system. Multistep flow experiments on soil cores are analyzed using either mobile-immobile or mobile-mobile type 1D dual-porosity models, and a 3D numerical model that considers a local-scale distribution of fragments. Simulations are compared with time series' of upward infiltration and matric potential heads measured at two depths using miniature tensiometers. The 3D and the 1D dual-permeability models yielded comparable results as long as pressure heads are in local equilibrium; however, could describe either the upward infiltration or the matric potential curves but not both at the same time. The mobile-immobile type dual-porosity model failed to describe the data. A simultaneous match with pressure heads and upward infiltration data could only be obtained with the 1D dual-permeability model (i.e., mobile-mobile) by assuming an additional restriction of the inter-domain water transfer. These results indicate that for unsaturated flow conditions at higher matric potential heads (i.e., here >-40 hPa), water in a restricted part of the fragment domain must be more mobile as compared to water in the sandy matrix domain. Closer inspections of the pore system and first neutron radiographic imaging support the hypothesis that a more continuous pore region exists at these pressure heads in the vicinity of the lignitic fragments possibly formed by fragment contacts and a lignitic dust interface-region between the two domains. The results suggest that the small-scale structure is too complex as to be represented by weighted contributions of individual components alone.


Subject(s)
Coal Mining , Models, Theoretical , Soil , Water Movements , Computer Simulation , Porosity , Pressure
3.
J Contam Hydrol ; 104(1-4): 126-36, 2009 Feb 16.
Article in English | MEDLINE | ID: mdl-19064301

ABSTRACT

Dye tracer studies revealed that earthworm burrows in the compacted plough pan of a Chinese paddy rice field can serve as preferential flow paths. It is, however, unclear whether the observed bypass of the compacted soil horizon might be explained by differences in hydraulic properties between the plough pan, the worm burrows with a surrounding denser drilosphere and the un-compacted subsoil, or by lower-permeable macropore walls. The objective is to separately analyse effects of the individual flow domains and to identify possible limiting factors (bottlenecks) in the flow system for better soil drainage management. Hydraulic properties are inversely estimated from in situ measurements of pressure heads and evaporation by using HYDRUS_1D code. Field data of 2D pressure head progression after dye tracer infiltration in the vicinity of worm burrows are simulated using HYDRUS_2D. The axisymmetric 2D flow model considers a highly permeable cylindrical macropore region in the centre of the flow domain, assuming Darcy's law is valid. The match between simulated and measured pressure head fields improved after including a lower-permeable drilosphere pore domain. Scenario simulations show that the inflow into the 'bypass-flow' domain are reduced by the homogenized topsoil (i.e., after puddling) and limited if the macropore domain is relatively shallow. The results suggest that basic structural features may in this concept be considered as one possibility to describe observed preferential flow patterns. The separate consideration of soil structural effects may help developing and improving management strategies for manipulation of preferential flow in soils of paddy fields.


Subject(s)
Models, Biological , Oligochaeta/physiology , Soil , Water Movements , Animals , Computer Simulation , Filtration , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...