Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5296, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906895

ABSTRACT

Artificial atoms in solids are leading candidates for quantum networks, scalable quantum computing, and sensing, as they combine long-lived spins with mobile photonic qubits. Recently, silicon has emerged as a promising host material where artificial atoms with long spin coherence times and emission into the telecommunications band can be controllably fabricated. This field leverages the maturity of silicon photonics to embed artificial atoms into the world's most advanced microelectronics and photonics platform. However, a current bottleneck is the naturally weak emission rate of these atoms, which can be addressed by coupling to an optical cavity. Here, we demonstrate cavity-enhanced single artificial atoms in silicon (G-centers) at telecommunication wavelengths. Our results show enhancement of their zero phonon line intensities along with highly pure single-photon emission, while their lifetime remains statistically unchanged. We suggest the possibility of two different existing types of G-centers, shedding new light on the properties of silicon emitters.

2.
Nat Commun ; 14(1): 2380, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37185250

ABSTRACT

A central goal for quantum technologies is to develop platforms for precise and scalable control of individually addressable artificial atoms with efficient optical interfaces. Color centers in silicon, such as the recently-isolated carbon-related G-center, exhibit emission directly into the telecommunications O-band and can leverage the maturity of silicon-on-insulator photonics. We demonstrate the generation, individual addressing, and spectral trimming of G-center artificial atoms in a silicon-on-insulator photonic integrated circuit platform. Focusing on the neutral charge state emission at 1278 nm, we observe waveguide-coupled single photon emission with narrow inhomogeneous distribution with standard deviation of 1.1 nm, excited state lifetime of 8.3 ± 0.7 ns, and no degradation after over a month of operation. In addition, we introduce a technique for optical trimming of spectral transitions up to 300 pm (55 GHz) and local deactivation of single artificial atoms. This non-volatile spectral programming enables alignment of quantum emitters into 25 GHz telecommunication grid channels. Our demonstration opens the path to quantum information processing based on implantable artificial atoms in very large scale integrated photonics.

SELECTION OF CITATIONS
SEARCH DETAIL
...