Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36770682

ABSTRACT

By selecting two electroactive species immobilized in a layered double hydroxide backbone (LDH) host, one able to act as a positive electrode material and the other as a negative one, it was possible to match their capacity to design an innovative energy storage device. Each electrode material is based on electroactive species, riboflavin phosphate (RF) on one side and ferrocene carboxylate (FCm) on the other, both interleaved into a layered double hydroxide (LDH) host structure to avoid any possible molecule migration and instability. The intercalation of the electroactive guest molecules is demonstrated by X-ray diffraction with the observation of an interlayer LDH spacing of about 2 nm in each case. When successfully hosted into LDH interlayer space, the electrochemical behavior of each hybrid assembly was scrutinized separately in aqueous electrolyte to characterize the redox reaction occurring upon cycling and found to be a rapid faradic type. Both electrode materials were placed face to face to achieve a new aqueous battery (16C rate) that provides a first cycle-capacity of about 7 mAh per gram of working electrode material LDH/FCm at 10 mV/s over a voltage window of 2.2 V in 1M sodium acetate, thus validating the hybrid LDH host approach on both electrode materials even if the cyclability of the assembly has not yet been met.

2.
Front Chem ; 10: 836325, 2022.
Article in English | MEDLINE | ID: mdl-35340418

ABSTRACT

In this study we report on the characterization and use of the anionic metal-organic framework (MOF) JUMP-1, [(Me2NH2)2[Co3(ntb)2(bdc)]] n , alongside with its alkali-metal ion-exchanged analogs JUMP-1(Li) and JUMP-1(Na), as electrode materials for lithium and sodium batteries. Composite electrodes containing these anionic-MOFs were prepared and tested in 1 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in propylene carbonate (PC) and/or 1 M sodium TFSI (NaTFSI) in PC. We showed that the ion-exchanged materials JUMP-1(Li) and JUMP-1(Na) display higher capacities in comparison with the original as-prepared compound JUMP-1 (490 mA∙h∙g-1 vs. 164 mA∙h∙g-1 and 83 mA∙h∙g-1 vs. 73 mA∙h∙g-1 in Li and Na based electrolytes, respectively). Additionally, we showed that the stability of the electrodes containing the ion-exchanged materials is higher than that of JUMP-1, suggesting a form of chemical pre-alkalation works to stabilize them prior to cycling. The results of these studies indicate that the use of designed anionic-MOFs represents a promising strategy for the realization of high performance electrodes suitable for energy storage devices.

3.
ChemSusChem ; 14(1): 449-455, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33078905

ABSTRACT

Organic polymer-based batteries represent a promising alternative to present-day metal-based systems and a valuable step toward printable and customizable energy storage devices. However, most scientific work is focussed on the development of new redox-active organic materials, while straightforward manufacturing and sustainable materials and production will be a necessary key for the transformation to mass market applications. Here, a new synthetic approach for 2,2,6,6-tetramethyl-4-piperinidyl-N-oxyl (TEMPO)-based polymer particles by emulsion polymerization and their electrochemical investigation are reported. The developed emulsion polymerization protocol based on an aqueous reaction medium allowed the sustainable synthesis of a redox-active electrode material, combined with simple variation of the polymer particle size, which enabled the preparation of nanoparticles from 35 to 138 nm. Their application in cell experiments revealed a significant effect of the size of the active-polymer particles on the performance of poly(2,2,6,6-tetramethyl-4-piperinidyl-N-oxyl methacrylate) (PTMA)-based electrodes. In particular rate capabilities were found to be reduced with larger diameters. Nevertheless, all cells based on the different particles revealed the ability to recover from temporary capacity loss due to application of very high charge/discharge rates.

4.
ChemSusChem ; 13(9): 2205-2219, 2020 May 08.
Article in English | MEDLINE | ID: mdl-31995281

ABSTRACT

Electrolyte chemistry is critical for any energy-storage device. Low-cost and sustainable rechargeable batteries based on organic redox-active materials are of great interest to tackle resource and performance limitations of current batteries with metal-based active materials. Organic active materials can be used not only as solid electrodes in the classic lithium-ion battery (LIB) setup, but also as redox fluids in redox-flow batteries (RFBs). Accordingly, they have suitability for mobile and stationary applications, respectively. Herein, different types of electrolytes, recent advances for designing better performing electrolytes, and remaining scientific challenges are discussed and summarized. Due to different configurations and requirements between LIBs and RFBs, the similarities and differences for choosing suitable electrolytes are discussed. Both general and specific strategies for promoting the utilization of organic active materials are covered.

SELECTION OF CITATIONS
SEARCH DETAIL
...