Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
R Soc Open Sci ; 11(2): 230803, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356870

ABSTRACT

The COVID-19 pandemic illustrated many of the challenges with using science to guide planning and policymaking. One such challenge has to do with how to manage, represent and communicate uncertainties in epidemiological models. This is considerably complicated, we argue, by the fact that the models themselves are often instrumental in structuring the involved uncertainties. In this paper we explore how models 'domesticate' uncertainties and what this implies for science-for-policy. We analyse three examples of uncertainty domestication in models of COVID-19 and argue that we need to pay more attention to how uncertainties are domesticated in models used for policy support, and the many ways in which uncertainties are domesticated within particular models can fail to fit with the needs and demands of policymakers and planners.

2.
J Math Biol ; 88(2): 23, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38296874

ABSTRACT

The formation of buds on the cell membrane of budding yeast cells is thought to be driven by reactions and diffusion involving the protein Cdc42. These processes can be described by a coupled system of partial differential equations known as the Schnakenberg system. The Schnakenberg system is known to exhibit diffusion-driven pattern formation, thus providing a mechanism for bud formation. However, it is not known how the accumulation of bud scars on the cell membrane affect the ability of the Schnakenberg system to form patterns. We have approached this problem by modelling a bud scar on the cell membrane with a hole on the sphere. We have studied how the spectrum of the Laplace-Beltrami operator, which determines the resulting pattern, is affected by the size of the hole, and by numerically solving the Schnakenberg system on a sphere with a hole using the finite element method. Both theoretical predictions and numerical solutions show that pattern formation is robust to the introduction of a bud scar of considerable size, which lends credence to the hypothesis that bud formation is driven by diffusion-driven instability.


Subject(s)
Cicatrix , Models, Biological , Humans , Cell Membrane , Diffusion
3.
J Theor Biol ; 574: 111624, 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37769802

ABSTRACT

The Allee effect describes the phenomenon that the per capita reproduction rate increases along with the population density at low densities. Allee effects have been observed at all scales, including in microscopic environments where individual cells are taken into account. This is great interest to cancer research, as understanding critical tumour density thresholds can inform treatment plans for patients. In this paper, we introduce a simple model for cell division in the case where the cancer cell population is modelled as an interacting particle system. The rate of the cell division is dependent on the local cell density, introducing an Allee effect. We perform parameter inference of the key model parameters through Markov Chain Monte Carlo, and apply our procedure to two image sequences from a cervical cancer cell line. The inference method is verified on in silico data to accurately identify the key parameters, and results on the in vitro data strongly suggest an Allee effect.

4.
J Math Biol ; 86(5): 68, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37017776

ABSTRACT

Theoretical and applied cancer studies that use individual-based models (IBMs) have been limited by the lack of a mathematical formulation that enables rigorous analysis of these models. However, spatial cumulant models (SCMs), which have arisen from theoretical ecology, describe population dynamics generated by a specific family of IBMs, namely spatio-temporal point processes (STPPs). SCMs are spatially resolved population models formulated by a system of differential equations that approximate the dynamics of two STPP-generated summary statistics: first-order spatial cumulants (densities), and second-order spatial cumulants (spatial covariances). We exemplify how SCMs can be used in mathematical oncology by modelling theoretical cancer cell populations comprising interacting growth factor-producing and non-producing cells. To formulate model equations, we use computational tools that enable the generation of STPPs, SCMs and mean-field population models (MFPMs) from user-defined model descriptions (Cornell et al. Nat Commun 10:4716, 2019). To calculate and compare STPP, SCM and MFPM-generated summary statistics, we develop an application-agnostic computational pipeline. Our results demonstrate that SCMs can capture STPP-generated population density dynamics, even when MFPMs fail to do so. From both MFPM and SCM equations, we derive treatment-induced death rates required to achieve non-growing cell populations. When testing these treatment strategies in STPP-generated cell populations, our results demonstrate that SCM-informed strategies outperform MFPM-informed strategies in terms of inhibiting population growths. We thus demonstrate that SCMs provide a new framework in which to study cell-cell interactions, and can be used to describe and perturb STPP-generated cell population dynamics. We, therefore, argue that SCMs can be used to increase IBMs' applicability in cancer research.


Subject(s)
Ecology , Neoplasms , Humans , Population Dynamics , Population Growth , Models, Biological
5.
Commun Biol ; 6(1): 402, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37055469

ABSTRACT

Cancer cell migration is a driving mechanism of invasion in solid malignant tumors. Anti-migratory treatments provide an alternative approach for managing disease progression. However, we currently lack scalable screening methods for identifying novel anti-migratory drugs. To this end, we develop a method that can estimate cell motility from single end-point images in vitro by estimating differences in the spatial distribution of cells and inferring proliferation and diffusion parameters using agent-based modeling and approximate Bayesian computation. To test the power of our method, we use it to investigate drug responses in a collection of 41 patient-derived glioblastoma cell cultures, identifying migration-associated pathways and drugs with potent anti-migratory effects. We validate our method and result in both in silico and in vitro using time-lapse imaging. Our proposed method applies to standard drug screen experiments, with no change needed, and emerges as a scalable approach to screen for anti-migratory drugs.


Subject(s)
Glioblastoma , Humans , Glioblastoma/metabolism , Bayes Theorem , Disease Progression , Cell Culture Techniques , Cell Proliferation
6.
J Math Biol ; 86(5): 64, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36991271

ABSTRACT

Particle systems made up of interacting agents is a popular model used in a vast array of applications, not the least in biology where the agents can represent everything from single cells to animals in a herd. Usually, the particles are assumed to undergo some type of random movements, and a popular way to model this is by using Brownian motion. The magnitude of random motion is often quantified using mean squared displacement, which provides a simple estimate of the diffusion coefficient. However, this method often fails when data is sparse or interactions between agents frequent. In order to address this, we derive a conjugate relationship in the diffusion term for large interacting particle systems undergoing isotropic diffusion, giving us an efficient inference method. The method accurately accounts for emerging effects such as anomalous diffusion stemming from mechanical interactions. We apply our method to an agent-based model with a large number of interacting particles, and the results are contrasted with a naive mean square displacement-based approach. We find a significant improvement in performance when using the higher-order method over the naive approach. This method can be applied to any system where agents undergo Brownian motion and will lead to improved estimates of diffusion coefficients compared to existing methods.


Subject(s)
Motion , Animals , Time Factors , Diffusion
7.
Entropy (Basel) ; 24(8)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-36010747

ABSTRACT

The notion of information and complexity are important concepts in many scientific fields such as molecular biology, evolutionary theory and exobiology. Many measures of these quantities are either difficult to compute, rely on the statistical notion of information, or can only be applied to strings. Based on assembly theory, we propose the notion of a ladderpath, which describes how an object can be decomposed into hierarchical structures using repetitive elements. From the ladderpath, two measures naturally emerge: the ladderpath-index and the order-index, which represent two axes of complexity. We show how the ladderpath approach can be applied to both strings and spatial patterns and argue that all systems that undergo evolution can be described as ladderpaths. Further, we discuss possible applications to human language and the origin of life. The ladderpath approach provides an alternative characterization of the information that is contained in a single object (or a system) and could aid in our understanding of evolving systems and the origin of life in particular.

8.
Sci Rep ; 12(1): 13256, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35918476

ABSTRACT

Computational models for predicting the early course of the COVID-19 pandemic played a central role in policy-making at regional and national levels. We performed a systematic review, data synthesis, and secondary validation of studies that reported on prediction models addressing the early stages of the COVID-19 pandemic in Sweden. A literature search in January 2021 based on the search triangle model identified 1672 peer-reviewed articles, preprints and reports. After applying inclusion criteria 52 studies remained out of which 12 passed a Risk of Bias Opinion Tool. When comparing model predictions with actual outcomes only 4 studies exhibited an acceptable forecast (mean absolute percentage error, MAPE < 20%). Models that predicted disease incidence could not be assessed due to the lack of reliable data during 2020. Drawing conclusions about the accuracy of the models with acceptable methodological quality was challenging because some models were published before the time period for the prediction, while other models were published during the prediction period or even afterwards. We conclude that the forecasting models involving Sweden developed during the early stages of the COVID-19 pandemic in 2020 had limited accuracy. The knowledge attained in this study can be used to improve the preparedness for coming pandemics.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Computer Simulation , Forecasting , Humans , Sweden/epidemiology
9.
Sci Rep ; 12(1): 9455, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35676303

ABSTRACT

We present a stochastic network model of metastasis spread for de novo metastatic breast cancer, composed of tumor to metastasis (primary seeding) and metastasis to metastasis spread (secondary seeding), parameterized using the SEER (Surveillance, Epidemiology, and End Results) database. The model provides a quantification of tumor cell dissemination rates between the tumor and metastasis sites. These rates were used to estimate the probability of developing a metastasis for untreated patients. The model was validated using tenfold cross-validation. We also investigated the effect of HER2 (Human Epidermal Growth Factor Receptor 2) status, estrogen receptor (ER) status and progesterone receptor (PR) status on the probability of metastatic spread. We found that dissemination rate through secondary seeding is up to 300 times higher than through primary seeding. Hormone receptor positivity promotes seeding to the bone and reduces seeding to the lungs and primary seeding to the liver, while HER2 expression increases dissemination to the bone, lungs and primary seeding to the liver. Secondary seeding from the lungs to the liver seems to be hormone receptor-independent, while that from the lungs to the brain appears HER2-independent.


Subject(s)
Breast Neoplasms , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Female , Hormones , Humans , Neoplasm Metastasis , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism
10.
PLoS Comput Biol ; 18(3): e1009844, 2022 03.
Article in English | MEDLINE | ID: mdl-35239640

ABSTRACT

In many human cancers, the rate of cell growth depends crucially on the size of the tumor cell population. Low, zero, or negative growth at low population densities is known as the Allee effect; this effect has been studied extensively in ecology, but so far lacks a good explanation in the cancer setting. Here, we formulate and analyze an individual-based model of cancer, in which cell division rates are increased by the local concentration of an autocrine growth factor produced by the cancer cells themselves. We show, analytically and by simulation, that autocrine signaling suffices to cause both strong and weak Allee effects. Whether low cell densities lead to negative (strong effect) or reduced (weak effect) growth rate depends directly on the ratio of cell death to proliferation, and indirectly on cellular dispersal. Our model is consistent with experimental observations from three patient-derived brain tumor cell lines grown at different densities. We propose that further studying and quantifying population-wide feedback, impacting cell growth, will be central for advancing our understanding of cancer dynamics and treatment, potentially exploiting Allee effects for therapy.


Subject(s)
Autocrine Communication , Neoplasms , Ecology , Feedback , Humans , Models, Biological , Population Density , Population Dynamics
11.
Bull Math Biol ; 84(5): 52, 2022 03 19.
Article in English | MEDLINE | ID: mdl-35305188

ABSTRACT

We show that under the assumption of weak frequency-dependent selection a wide class of population dynamical models can be analysed using perturbation theory. The inner solution corresponds to the ecological dynamics, where to zeroth order, the genotype frequencies remain constant. The outer solution provides the evolutionary dynamics and corresponds, to zeroth order, to a generalisation of the replicator equation. We apply this method to a model of public goods dynamics and construct, using matched asymptotic expansions, a composite solution valid for all times. We also analyse a Lotka-Volterra model of predator competition and show that to zeroth order the fraction of wild-type predators follows a replicator equation with a constant selection coefficient given by the predator death rate. For both models, we investigate how the error between approximate solutions and the solution to the full model depend on the order of the approximation and show using numerical comparison, for [Formula: see text] and 2, that the error scales according to [Formula: see text], where [Formula: see text] is the strength of selection and k is the order of the approximation.


Subject(s)
Mathematical Concepts , Models, Biological , Biological Evolution , Population Dynamics
12.
Emerg Infect Dis ; 28(3): 564-571, 2022 03.
Article in English | MEDLINE | ID: mdl-35201737

ABSTRACT

We report on local nowcasting (short-term forecasting) of coronavirus disease (COVID-19) hospitalizations based on syndromic (symptom) data recorded in regular healthcare routines in Östergötland County (population ≈465,000), Sweden, early in the pandemic, when broad laboratory testing was unavailable. Daily nowcasts were supplied to the local healthcare management based on analyses of the time lag between telenursing calls with the chief complaints (cough by adult or fever by adult) and COVID-19 hospitalization. The complaint cough by adult showed satisfactory performance (Pearson correlation coefficient r>0.80; mean absolute percentage error <20%) in nowcasting the incidence of daily COVID-19 hospitalizations 14 days in advance until the incidence decreased to <1.5/100,000 population, whereas the corresponding performance for fever by adult was unsatisfactory. Our results support local nowcasting of hospitalizations on the basis of symptom data recorded in routine healthcare during the initial stage of a pandemic.


Subject(s)
COVID-19 , Adult , COVID-19/epidemiology , Delivery of Health Care , Forecasting , Hospitalization , Humans , SARS-CoV-2 , Sweden/epidemiology
13.
Sci Rep ; 11(1): 23963, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34907208

ABSTRACT

We demonstrate that finite impulse response (FIR) models can be applied to analyze the time evolution of an epidemic with its impact on deaths and healthcare strain. Using time series data for COVID-19-related cases, ICU admissions and deaths from Sweden, the FIR model gives a consistent epidemiological trajectory for a simple delta filter function. This results in a consistent scaling between the time series if appropriate time delays are applied and allows the reconstruction of cases for times before July 2020, when RT-PCR testing was not widely available. Combined with randomized RT-PCR study results, we utilize this approach to estimate the total number of infections in Sweden, and the corresponding infection-to-fatality ratio (IFR), infection-to-case ratio (ICR), and infection-to-ICU admission ratio (IIAR). Our values for IFR, ICR and IIAR are essentially constant over large parts of 2020 in contrast with claims of healthcare adaptation or mutated virus variants importantly affecting these ratios. We observe a diminished IFR in late summer 2020 as well as a strong decline during 2021, following the launch of a nation-wide vaccination program. The total number of infections during 2020 is estimated to 1.3 million, indicating that Sweden was far from herd immunity.


Subject(s)
COVID-19/epidemiology , Mortality/trends , SARS-CoV-2/isolation & purification , COVID-19/mortality , COVID-19 Nucleic Acid Testing , Finite Element Analysis , Hospitalization/statistics & numerical data , Humans , Intensive Care Units , SARS-CoV-2/genetics , Sweden/epidemiology , Time Factors
14.
Sci Rep ; 11(1): 24171, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34921175

ABSTRACT

The transmission of COVID-19 is dependent on social mixing, the basic rate of which varies with sociodemographic, cultural, and geographic factors. Alterations in social mixing and subsequent changes in transmission dynamics eventually affect hospital admissions. We employ these observations to model and predict regional hospital admissions in Sweden during the COVID-19 pandemic. We use an SEIR-model for each region in Sweden in which the social mixing is assumed to depend on mobility data from public transport utilisation and locations for mobile phone usage. The results show that the model could capture the timing of the first and beginning of the second wave of the pandemic 3 weeks in advance without any additional assumptions about seasonality. Further, we show that for two major regions of Sweden, models with public transport data outperform models using mobile phone usage. We conclude that a model based on routinely collected mobility data makes it possible to predict future hospital admissions for COVID-19 3 weeks in advance.


Subject(s)
Algorithms , COVID-19/transmission , Cell Phone/statistics & numerical data , Hospitalization/statistics & numerical data , Models, Theoretical , Patient Admission/statistics & numerical data , COVID-19/epidemiology , COVID-19/virology , Disease Transmission, Infectious/statistics & numerical data , Forecasting/methods , Geography , Hospitalization/trends , Humans , Pandemics/prevention & control , Patient Admission/trends , Retrospective Studies , SARS-CoV-2/physiology , Sweden/epidemiology , Travel/statistics & numerical data
15.
NPJ Syst Biol Appl ; 7(1): 13, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33637746

ABSTRACT

The GTPase Cdc42 is the master regulator of eukaryotic cell polarisation. During this process, the active form of Cdc42 is accumulated at a particular site on the cell membrane called the pole. It is believed that the accumulation of the active Cdc42 resulting in a pole is driven by a combination of activation-inactivation reactions and diffusion. It has been proposed using mathematical modelling that this is the result of diffusion-driven instability, originally proposed by Alan Turing. In this study, we developed, analysed and validated a 3D bulk-surface model of the dynamics of Cdc42. We show that the model can undergo both classic and non-classic Turing instability by deriving necessary conditions for which this occurs and conclude that the non-classic case can be viewed as a limit case of the classic case of diffusion-driven instability. Using three-dimensional Spatio-temporal simulation we predicted pole size and time to polarisation, suggesting that cell polarisation is mainly driven by the reaction strength parameter and that the size of the pole is determined by the relative diffusion.


Subject(s)
Cell Polarity/physiology , Spindle Poles/physiology , cdc42 GTP-Binding Protein/metabolism , Biological Phenomena , Computer Simulation , Diffusion , Linear Models , Models, Biological , Models, Theoretical , cdc42 GTP-Binding Protein/physiology
16.
PLoS Comput Biol ; 15(9): e1007361, 2019 09.
Article in English | MEDLINE | ID: mdl-31545788

ABSTRACT

The co-evolutionary dynamics of competing populations can be strongly affected by frequency-dependent selection and spatial population structure. As co-evolving populations grow into a spatial domain, their initial spatial arrangement and their growth rate differences are important factors that determine the long-term outcome. We here model producer and free-rider co-evolution in the context of a diffusive public good (PG) that is produced by the producers at a cost but evokes local concentration-dependent growth benefits to all. The benefit of the PG can be non-linearly dependent on public good concentration. We consider the spatial growth dynamics of producers and free-riders in one, two and three dimensions by modeling producer cell, free-rider cell and public good densities in space, driven by the processes of birth, death and diffusion (cell movement and public good distribution). Typically, one population goes extinct, but the time-scale of this process varies with initial conditions and the growth rate functions. We establish that spatial variation is transient regardless of dimensionality, and that structured initial conditions lead to increasing times to get close to an extinction state, called ε-extinction time. Further, we find that uncorrelated initial spatial structures do not influence this ε-extinction time in comparison to a corresponding well-mixed (non-spatial) system. In order to estimate the ε-extinction time of either free-riders or producers we derive a slow manifold solution. For invading populations, i.e. for populations that are initially highly segregated, we observe a traveling wave, whose speed can be calculated. Our results provide quantitative predictions for the transient spatial dynamics of cooperative traits under pressure of extinction.


Subject(s)
Computational Biology/methods , Game Theory , Models, Theoretical , Population Dynamics , Bacteria/cytology , Humans , Neoplasms/physiopathology , Nonlinear Dynamics , Spatial Behavior , Time Factors
17.
Phys Rev E ; 99(6-1): 062412, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31330651

ABSTRACT

Diffusive public goods (PG) games are difficult to analyze due to population assortment affecting growth rates of cooperators (producers) and free-riders. We study these growth rates using spectral decomposition of cellular densities and derive a finite cell-size correction of the growth rate advantage which exactly describes the dynamics of a randomly assorted population and approximates the dynamics under limited dispersal. The resulting effective benefit-to-cost ratio relates the physical parameters of PG dynamics to the persistence of cooperation, and our findings provide a powerful tool for the analysis of diffusive PG games, explaining commonly observed patterns of cooperation.


Subject(s)
Cooperative Behavior , Game Theory , Models, Theoretical
18.
J Math Biol ; 78(7): 2289-2315, 2019 06.
Article in English | MEDLINE | ID: mdl-30972438

ABSTRACT

Durotaxis, the phenomena where cells migrate up a gradient in substrate stiffness, remains poorly understood. It has been proposed that durotaxis results from the reinforcement of focal adhesions on stiff substrates. In this paper we formulate a mathematical model of single cell migration on elastic substrates with spatially varying stiffness. We develop a stochastic model where the cell moves by updating the position of its adhesion sites at random times, and the rate of updates is determined by the local stiffness of the substrate. We investigate two physiologically motivated mechanisms of stiffness sensing. From the stochastic model of single cell migration we derive a population level description in the form of a partial differential equation for the time evolution of the density of cells. The equation is an advection-diffusion equation, where the advective velocity is proportional to the stiffness gradient. The model shows quantitative agreement with experimental results in which cells tend to cluster when seeded on a matrix with periodically varying stiffness.


Subject(s)
Algorithms , Cell Adhesion , Cell Movement , Cellular Microenvironment , Computer Simulation , Models, Biological , Biomechanical Phenomena , Humans
19.
PLoS Comput Biol ; 15(4): e1006868, 2019 04.
Article in English | MEDLINE | ID: mdl-30933969

ABSTRACT

The formation of metastases is driven by the ability of cancer cells to disseminate from the site of the primary tumour to target organs. The process of dissemination is constrained by anatomical features such as the flow of blood and lymph in the circulatory system. We exploit this fact in a stochastic network model of metastasis formation, in which only anatomically feasible routes of dissemination are considered. By fitting this model to two different clinical datasets (tongue & ovarian cancer) we show that incidence data can be modelled using a small number of biologically meaningful parameters. The fitted models reveal site specific relative rates of dissemination and also allow for patient-specific predictions of metastatic involvement based on primary tumour location and stage. Applied to other data sets this type of model could yield insight about seed-soil effects, and could also be used in a clinical setting to provide personalised predictions about the extent of metastatic spread.


Subject(s)
Models, Biological , Neoplasm Metastasis/pathology , Computational Biology , Female , Humans , Kinetics , Lymphatic Metastasis/pathology , Male , Neoplasm Invasiveness/pathology , Neoplasm Seeding , Neoplastic Cells, Circulating/pathology , Ovarian Neoplasms/pathology , Stochastic Processes , Tongue Neoplasms/pathology
20.
Commun Biol ; 2: 53, 2019.
Article in English | MEDLINE | ID: mdl-30729189

ABSTRACT

An evolutionary game emerges when a subset of individuals incur costs to provide benefits to all individuals. Public goods games (PGG) cover the essence of such dilemmas in which cooperators are prone to exploitation by defectors. We model the population dynamics of a non-linear PGG and consider density-dependence on the global level, while the game occurs within local neighborhoods. At low cooperation, increases in the public good provide increasing returns. At high cooperation, increases provide diminishing returns. This mechanism leads to diverse evolutionarily stable strategies, including monomorphic and polymorphic populations, and neighborhood-size-driven state changes, resulting in hysteresis between equilibria. Stochastic or strategy-dependent variations in neighborhood sizes favor coexistence by destabilizing monomorphic states. We integrate our model with experiments of cancer cell growth and confirm that our framework describes PGG dynamics observed in cellular populations. Our findings advance the understanding of how neighborhood-size effects in PGG shape the dynamics of growing populations.


Subject(s)
Game Theory , Games, Recreational , Models, Statistical , Population Dynamics , Cooperative Behavior , Humans , Residence Characteristics/statistics & numerical data , Social Problems/psychology , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...