Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Aspects Med ; 91: 101148, 2023 06.
Article in English | MEDLINE | ID: mdl-36257857

ABSTRACT

Advances in genome sequencing have greatly facilitated the identification of genomic variants underlying rare neurodevelopmental and neurodegenerative disorders. Understanding the fundamental causes of rare monogenic disorders has made gene therapy a possible treatment approach for these conditions. RNA interference (RNAi) technologies such as small interfering RNA (siRNA), microRNA (miRNA), and short hairpin RNA (shRNA), and other oligonucleotide-based modalities such as antisense oligonucleotides (ASOs) are being developed as potential therapeutic approaches for manipulating expression of the genes that cause a variety of neurological diseases. Here, we offer a brief review of the mechanism of action of these RNAi approaches; provide deeper discussion of the advantages, challenges, and specific considerations related to the development of RNAi therapeutics for neurological disease; and highlight examples of rare neurological diseases for which RNAi therapeutics hold great promise.


Subject(s)
MicroRNAs , Humans , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , Genetic Therapy
2.
Cell Rep Med ; 2(8): 100377, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34467252

ABSTRACT

New research from Pandya and colleagues1 identifies PEG10 as a UBE3A-regulated protein that may underlie pathophysiology in Angelman syndrome neurons. PEG10 is a secreted protein, and this work suggests that it may be a potential biomarker for Angelman syndrome therapeutics under development.


Subject(s)
Angelman Syndrome , Ubiquitin-Protein Ligases , Angelman Syndrome/genetics , Animals , Biomarkers , Disease Models, Animal , Neurons , Ubiquitin-Protein Ligases/genetics
3.
Hum Mol Genet ; 29(18): 3021-3031, 2020 11 04.
Article in English | MEDLINE | ID: mdl-32833011

ABSTRACT

Loss of UBE3A expression, a gene regulated by genomic imprinting, causes Angelman syndrome (AS), a rare neurodevelopmental disorder. The UBE3A gene encodes an E3 ubiquitin ligase with three known protein isoforms in humans. Studies in mouse suggest that the human isoforms may have differences in localization and neuronal function. A recent case study reported mild AS phenotypes in individuals lacking one specific isoform. Here we have used CRISPR/Cas9 to generate isogenic human embryonic stem cells (hESCs) that lack the individual protein isoforms. We demonstrate that isoform 1 accounts for the majority of UBE3A protein in hESCs and neurons. We also show that UBE3A predominantly localizes to the cytoplasm in both wild type and isoform-null cells. Finally, we show that neurons lacking isoform 1 display a less severe electrophysiological AS phenotype.


Subject(s)
Angelman Syndrome/genetics , Genetic Predisposition to Disease , Ubiquitin-Protein Ligases/genetics , Angelman Syndrome/pathology , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Electrophysiological Phenomena/genetics , Genomic Imprinting/genetics , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/pathology , Humans , Mice , Neurons/metabolism , Neurons/pathology , Protein Isoforms/genetics
4.
Adv Neurobiol ; 25: 55-77, 2020.
Article in English | MEDLINE | ID: mdl-32578144

ABSTRACT

The chromosome 15q11-q13 region of the human genome is regulated by genomic imprinting, an epigenetic phenomenon in which genes are expressed exclusively from one parental allele. Several genes within the 15q11-q13 region are expressed exclusively from the paternally inherited chromosome 15. At least one gene UBE3A, shows exclusive expression of the maternal allele, but this allele-specific expression is restricted to neurons. The appropriate regulation of imprinted gene expression across chromosome 15q11-q13 has important implications for human disease. Three different neurodevelopmental disorders result from aberrant expression of imprinted genes in this region: Prader-Willi syndrome (PWS), Angelman syndrome (AS), and 15q duplication syndrome.


Subject(s)
Angelman Syndrome , Prader-Willi Syndrome , Angelman Syndrome/genetics , Chromosomes , Genomic Imprinting/genetics , Humans , Prader-Willi Syndrome/genetics
5.
Proc Natl Acad Sci U S A ; 116(6): 2181-2186, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30674673

ABSTRACT

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of function from the maternal allele of UBE3A, a gene encoding an E3 ubiquitin ligase. UBE3A is only expressed from the maternally inherited allele in mature human neurons due to tissue-specific genomic imprinting. Imprinted expression of UBE3A is restricted to neurons by expression of UBE3A antisense transcript (UBE3A-ATS) from the paternally inherited allele, which silences the paternal allele of UBE3A in cis However, the mechanism restricting UBE3A-ATS expression and UBE3A imprinting to neurons is not understood. We used CRISPR/Cas9-mediated genome editing to functionally define a bipartite boundary element critical for neuron-specific expression of UBE3A-ATS in humans. Removal of this element led to up-regulation of UBE3A-ATS without repressing paternal UBE3A However, increasing expression of UBE3A-ATS in the absence of the boundary element resulted in full repression of paternal UBE3A, demonstrating that UBE3A imprinting requires both the loss of function from the boundary element as well as the up-regulation of UBE3A-ATS These results suggest that manipulation of the competition between UBE3A-ATS and UBE3A may provide a potential therapeutic approach for AS.


Subject(s)
Chromatin/genetics , Genomic Imprinting , Neurons/metabolism , Ubiquitin-Protein Ligases/genetics , Angelman Syndrome/genetics , Binding Sites , Chromatin/metabolism , Epistasis, Genetic , Exons , Gene Expression , Gene Expression Regulation , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Protein Binding , RNA, Antisense , RNA, Long Noncoding , Sequence Deletion
6.
Nat Commun ; 8: 15038, 2017 04 24.
Article in English | MEDLINE | ID: mdl-28436452

ABSTRACT

Angelman syndrome (AS) is a neurogenetic disorder caused by deletion of the maternally inherited UBE3A allele and is characterized by developmental delay, intellectual disability, ataxia, seizures and a happy affect. Here, we explored the underlying pathophysiology using induced pluripotent stem cell-derived neurons from AS patients and unaffected controls. AS-derived neurons showed impaired maturation of resting membrane potential and action potential firing, decreased synaptic activity and reduced synaptic plasticity. These patient-specific differences were mimicked by knocking out UBE3A using CRISPR/Cas9 or by knocking down UBE3A using antisense oligonucleotides. Importantly, these phenotypes could be rescued by pharmacologically unsilencing paternal UBE3A expression. Moreover, selective effects of UBE3A disruption at late stages of in vitro development suggest that changes in action potential firing and synaptic activity may be secondary to altered resting membrane potential. Our findings provide a cellular phenotype for investigating pathogenic mechanisms underlying AS and identifying novel therapeutic strategies.


Subject(s)
Action Potentials/physiology , Angelman Syndrome/pathology , Induced Pluripotent Stem Cells/physiology , Neurons/physiology , Action Potentials/genetics , Angelman Syndrome/genetics , Angelman Syndrome/metabolism , Cell Differentiation , Cells, Cultured , Female , Gene Knockout Techniques , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Membrane Potentials/genetics , Membrane Potentials/physiology , Neuronal Plasticity/genetics , Neuronal Plasticity/physiology , Neurons/metabolism , Synaptic Transmission/genetics , Synaptic Transmission/physiology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
7.
Methods Mol Biol ; 1353: 45-64, 2016.
Article in English | MEDLINE | ID: mdl-25520291

ABSTRACT

Induced pluripotent stem cell (iPSC) technology has allowed for the invaluable modeling of many genetic disorders including disorders associated with genomic imprinting. Genomic imprinting involves differential DNA and histone methylation and results in allele-specific gene expression. Most of the epigenetic marks in somatic cells are erased and reestablished during the process of reprogramming into iPSCs. Therefore, in generating models of disorders associated with genomic imprinting, it is important to verify that the imprinting status and allele-specific gene expression patterns of the parental somatic cells are maintained in their derivative iPSCs. Here, we describe three techniques: DNA methylation analysis, allele-specific PCR, and RNA FISH, which we use to analyze genomic imprinting in iPSC models of neurogenetic disorders involving copy number variations of the chromosome 15q11-q13 region.


Subject(s)
Epigenesis, Genetic , Genomic Imprinting , Induced Pluripotent Stem Cells/metabolism , Models, Genetic , Prader-Willi Syndrome/genetics , Alleles , Animals , Cell Differentiation , Cells, Cultured , DNA Copy Number Variations , DNA Methylation , DNA Primers/chemical synthesis , DNA Primers/metabolism , Feeder Cells/cytology , Fibroblasts/cytology , Humans , In Situ Hybridization, Fluorescence/methods , Induced Pluripotent Stem Cells/pathology , Mice , Polymerase Chain Reaction/methods , Prader-Willi Syndrome/diagnosis , Prader-Willi Syndrome/pathology , RNA/genetics , RNA/metabolism , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
8.
Mol Autism ; 5: 44, 2014.
Article in English | MEDLINE | ID: mdl-25694803

ABSTRACT

BACKGROUND: Duplications of the chromosome 15q11-q13.1 region are associated with an estimated 1 to 3% of all autism cases, making this copy number variation (CNV) one of the most frequent chromosome abnormalities associated with autism spectrum disorder (ASD). Several genes located within the 15q11-q13.1 duplication region including ubiquitin protein ligase E3A (UBE3A), the gene disrupted in Angelman syndrome (AS), are involved in neural function and may play important roles in the neurobehavioral phenotypes associated with chromosome 15q11-q13.1 duplication (Dup15q) syndrome. METHODS: We have generated induced pluripotent stem cell (iPSC) lines from five different individuals containing CNVs of 15q11-q13.1. The iPSC lines were differentiated into mature, functional neurons. Gene expression across the 15q11-q13.1 locus was compared among the five iPSC lines and corresponding iPSC-derived neurons using quantitative reverse transcription PCR (qRT-PCR). Genome-wide gene expression was compared between neurons derived from three iPSC lines using mRNA-Seq. RESULTS: Analysis of 15q11-q13.1 gene expression in neurons derived from Dup15q iPSCs reveals that gene copy number does not consistently predict expression levels in cells with interstitial duplications of 15q11-q13.1. mRNA-Seq experiments show that there is substantial overlap in the genes differentially expressed between 15q11-q13.1 deletion and duplication neurons, Finally, we demonstrate that UBE3A transcripts can be pharmacologically rescued to normal levels in iPSC-derived neurons with a 15q11-q13.1 duplication. CONCLUSIONS: Chromatin structure may influence gene expression across the 15q11-q13.1 region in neurons. Genome-wide analyses suggest that common neuronal pathways may be disrupted in both the Angelman and Dup15q syndromes. These data demonstrate that our disease-specific stem cell models provide a new tool to decipher the underlying cellular and genetic disease mechanisms of ASD and may also offer a pathway to novel therapeutic intervention in Dup15q syndrome.

9.
Stem Cells Dev ; 22(10): 1477-89, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23351095

ABSTRACT

Gamma aminobutyric acid (GABA)-expressing interneurons are the major inhibitory cells of the cerebral cortex and hippocampus. These interneurons originate in the medial ganglionic eminence (MGE) and lateral ganglionic eminence of the ventral forebrain during embryonic development and show reduced survival and function in a variety of neurological disorders, including temporal lobe epilepsy. We and others have proposed that embryonic stem cell (ESC)-derived ventral forebrain progenitors might provide a source of new GABAergic interneurons for cell-based therapies. While human ESCs (hESCs) are readily differentiated in vitro into dorsal telencephalic neural progenitors, standard protocols for generating ventral subtypes of telencephalic progenitors are less effective. We now report efficient derivation of GABAergic progenitors using an established hESC reporter line that expresses green fluorescent protein (GFP) under the control of an endogenous NKX2.1 promoter. GABAergic progenitors were derived from this hESC line by a modified monolayer neural differentiation protocol. Consistent with sonic hedgehog (SHH)-dependent specification of NKX2.1-positive progenitors in the embryonic MGE, we show a dose-dependent increase in the generation of NKX2.1:GFP-positive progenitors after SHH treatment in vitro. Characterization of NKX2.1:GFP-positive cells confirms their identity as MGE-like neural progenitors, based on gene expression profiles and their ability to differentiate into GABAergic interneurons. We are also able to generate highly enriched populations of NKX2.1:GFP-positive progenitors, including cells with telencephalic identity, by fluorescence-activated cell sorting. These hESC-derived ventral forebrain progenitors are suitable candidates for cell-based therapies that aim at replacing dysfunctional or damaged cortical or hippocampal GABAergic interneurons.


Subject(s)
Cell Separation/methods , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Nuclear Proteins/metabolism , Prosencephalon/cytology , Transcription Factors/metabolism , Animals , Cell Differentiation/drug effects , Embryonic Stem Cells/drug effects , Flow Cytometry , Green Fluorescent Proteins/metabolism , Hedgehog Proteins/pharmacology , Humans , Mice , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Recombinant Proteins/pharmacology , Thyroid Nuclear Factor 1
10.
Cell Transplant ; 21(8): 1603-11, 2012.
Article in English | MEDLINE | ID: mdl-22776287

ABSTRACT

Embryonic stem cells (ESCs) hold great therapeutic potential due to their ability to differentiate into cells of the three primary germ layers, which can be used to repopulate disease-damaged tissues. In fact, two cell therapies using ESC derivatives are currently in phase I clinical trials. A main concern in using ESCs and their derivatives for cell transplantation is the ability of undifferentiated ESCs to generate tumors in the host. Positive selection steps are often included in protocols designed to generate particular cell types from ESCs; however, the transition from ESC to progenitor cell or terminally differentiated cell is not synchronous, and residual undifferentiated cells often remain. In our transplants of ESC-derived neural progenitors (ESNPs) into the adult mouse hippocampus, we have observed the formation of teratocarcinomas. We set out to reduce teratocarcinoma formation by enrichment of ESNPs using fluorescence-activated cell sorting (FACS) and have found that, although enrichment prior to transplant reduces the overall rate of teratocarcinoma formation, the tumorigenicity of cell batches can vary widely, even after FACS enrichment to as much as 95% ESNPs. Our data suggest that this variability may be due to the percentage of residual ESCs remaining in the transplant cell population and to the presence of pluripotent epiblast-like cells, not previously identified in transplant batches. Our data emphasize the need for stringent characterization of transplant cell populations that will be used for cell replacement therapies in order to reduce the risk of tumor formation.


Subject(s)
Embryonic Stem Cells/cytology , Hippocampus/pathology , Neural Stem Cells/transplantation , Teratocarcinoma/pathology , Animals , Cell Differentiation , Cell Separation , Cells, Cultured , Flow Cytometry , Immunohistochemistry , Mice , Neural Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...