Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 15(3)2024 02 25.
Article in English | MEDLINE | ID: mdl-38540354

ABSTRACT

The search for SNPs and candidate genes that determine the manifestation of major selected traits is one crucial objective for genomic selection aimed at increasing poultry production efficiency. Here, we report a genome-wide association study (GWAS) for traits characterizing meat performance in the domestic quail. A total of 146 males from an F2 reference population resulting from crossing a fast (Japanese) and a slow (Texas White) growing breed were examined. Using the genotyping-by-sequencing technique, genomic data were obtained for 115,743 SNPs (92,618 SNPs after quality control) that were employed in this GWAS. The results identified significant SNPs associated with the following traits at 8 weeks of age: body weight (nine SNPs), daily body weight gain (eight SNPs), dressed weight (33 SNPs), and weights of breast (18 SNPs), thigh (eight SNPs), and drumstick (three SNPs). Also, 12 SNPs and five candidate genes (GNAL, DNAJC6, LEPR, SPAG9, and SLC27A4) shared associations with three or more traits. These findings are consistent with the understanding of the genetic complexity of body weight-related traits in quail. The identified SNPs and genes can be used in effective quail breeding as molecular genetic markers for growth and meat characteristics for the purpose of genetic improvement.


Subject(s)
Coturnix , Genome-Wide Association Study , Male , Animals , Coturnix/genetics , Polymorphism, Single Nucleotide/genetics , Meat/analysis , Body Weight/genetics
2.
ACS Pharmacol Transl Sci ; 7(3): 654-666, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38481688

ABSTRACT

Opioids represent the most extensive category of abused substances in the United States, and the number of fatalities caused by these drugs exceeds those associated with all other drug overdoses combined. The administration of naltrexone, a potent pan-opioid receptor antagonist, to an individual dependent on opioids can trigger opioid withdrawal and induce severe side effects. There is a pressing demand for opioid antagonists free of opioid withdrawal effects. In our laboratory, we have identified a compound with affinity to mu, delta, and kappa opioid receptors in the range of 150-250 nM. This blood-brain barrier (BBB)-permeant compound was metabolically stable in vitro and in vivo. Our in vivo work demonstrated that 1-10 mg/kg intraperitoneal administration of our compound produces moderate efficacy in antagonizing morphine-induced antiallodynia effects in the chemotherapy-induced peripheral neuropathy (CIPN) model. The treatment was well-tolerated and did not cause behavioral changes. We have observed a fast elimination rate of this metabolically stable molecule. Furthermore, no organ toxicity was observed during the chronic administration of the compound over a 14-day period. Overall, we report a novel functional opioid antagonist holds promise for developing an opioid withdrawal therapeutic.

3.
ACS Pharmacol Transl Sci ; 7(1): 120-136, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38230276

ABSTRACT

Triple-negative breast cancer (TNBC) poses significant challenges due to its aggressive nature and limited treatment options. In this study, we investigated the impact of urea-based compounds on TNBC cells to uncover their mechanisms of action and therapeutic potential. Notably, polypharmacology urea analogues were found to work via p53-related pathways, and their cytotoxic effects were amplified by the modulation of oxidative phosphorylation pathways in the mitochondria of cancer cells. Specifically, compound 1 demonstrated an uncoupling effect on adenosine triphosphate (ATP) synthesis, leading to a time- and concentration-dependent shift toward glycolysis-based ATP production in MDA-MB-231 cells. At the same time, no significant changes in ATP synthesis were observed in noncancerous MCF10A cells. Moreover, the unique combination of mitochondrial- and p53-related effects leads to a higher cytotoxicity of urea analogues in cancer cells. Notably, the majority of tested clinical agents, but sorafenib, showed significantly higher toxicity in MCF10A cells. To test our hypothesis of sensitizing cancer cells to the treatment via modulation of mitochondrial health, we explored the combinatorial effects of urea-based analogues with established chemotherapeutic agents commonly used in TNBC treatment. Synergistic effects were evident in most tested combinations in TNBC cell lines, while noncancerous MCF10A cells exhibited higher resistance to these combination treatments. The combination of compound 1 with SN38 displayed nearly 60-fold selectivity toward TNBC cells over MCF10A cells. Encouragingly, combinations involving compound 1 restored the sensitivity of TNBC cells to cisplatin. In conclusion, our study provides valuable insights into the mechanisms of action of urea-based compounds in TNBC cells. The observed induction of mitochondrial membrane depolarization, inhibition of superoxide dismutase activity, disruption of ATP synthesis, and cell-line-specific responses contribute to their cytotoxic effects. Additionally, we demonstrated the synergistic potential of compound 1 to enhance the efficacy of existing TNBC treatments. However, the therapeutic potential and underlying molecular mechanisms of urea-based analogues in TNBC cell lines require further exploration.

4.
Animals (Basel) ; 13(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38003057

ABSTRACT

Traces of long-term artificial selection can be detected in genomes of domesticated birds via whole-genome screening using single-nucleotide polymorphism (SNP) markers. This study thus examined putative genomic regions under selection that are relevant to the development history, divergence and phylogeny among Japanese quails of various breeds and utility types. We sampled 99 birds from eight breeds (11% of the global gene pool) of egg (Japanese, English White, English Black, Tuxedo and Manchurian Golden), meat (Texas White and Pharaoh) and dual-purpose (Estonian) types. The genotyping-by-sequencing analysis was performed for the first time in domestic quails, providing 62,935 SNPs. Using principal component analysis, Neighbor-Net and Admixture algorithms, the studied breeds were characterized according to their genomic architecture, ancestry and direction of selective breeding. Japanese and Pharaoh breeds had the smallest number and length of homozygous segments indicating a lower selective pressure. Tuxedo and Texas White breeds showed the highest values of these indicators and genomic inbreeding suggesting a greater homozygosity. We revealed evidence for the integration of genomic and performance data, and our findings are applicable for elucidating the history of creation and genomic variability in quail breeds that, in turn, will be useful for future breeding improvement strategies.

6.
Eur J Med Chem ; 254: 115309, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37054561

ABSTRACT

Using the structure of gliotoxin as a starting point, we have prepared two different chemotypes with selective affinity to the kappa opioid receptor (KOR). Using medicinal chemistry approaches and structure-activity relationship (SAR) studies, structural features required for the observed affinity were identified, and advanced molecules with favorable Multiparameter Optimization (MPO) and Ligand Lipophilicity (LLE) profiles were prepared. Using the Thermal Place Preference Test (TPPT), we have shown that compound2 blocks the antinociceptive effect of U50488, a known KOR agonist. Multiple reports suggest that modulation of KOR signaling is a promising therapeutic strategy in treating neuropathic pain (NP). As a proof-of-concept study, we tested compound 2 in a rat model of NP and recorded its ability to modulate sensory and emotional pain-related behaviors. Observed in vitro and in vivo results suggest that these ligands can be used to develop compounds with potential application as pain therapeutics.


Subject(s)
Neuralgia , Receptors, Opioid , Animals , Rats , Analgesics, Opioid/chemistry , Diketopiperazines , Ligands , Receptors, Opioid, kappa , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/chemistry
7.
J Pharmacol Exp Ther ; 385(1): 35-49, 2023 04.
Article in English | MEDLINE | ID: mdl-36746610

ABSTRACT

Existing vascular endothelial growth factor-oriented antiangiogenic approaches are known for their high potency. However, significant side effects associated with their use drive the need for novel antiangiogenic strategies. The small GTPase RhoA is an established regulator of actin cytoskeletal dynamics. Previous studies have highlighted the impact of endothelial RhoA pathway on angiogenesis. Rho-associate kinase (ROCK), a direct RhoA effector, is potently inhibited by Fasudil, a clinically relevant ROCK inhibitor. Here, we aimed to target the RhoA signaling in endothelial cells by generating Fasudil-encapsulated CD31-targeting liposomes as a potential antiangiogenic therapy. The liposomes presented desirable characteristics, preferential binding to CD31-expressing HEK293T cells and to endothelial cells, inhibited stress fiber formation and cytoskeletal-related morphometric parameters, and inhibited in vitro angiogenic functions. Overall, this work shows that the nanodelivery-mediated endothelial targeting of RhoA signaling can offer a promising strategy for angiogenesis inhibition in vascular-related diseases. SIGNIFICANCE STATEMENT: Systemic administration of antiangiogenic therapeutics induces side effects to non-targeted tissues. This study, among others, has shown the impact of the RhoA signaling in the endothelial cells and their angiogenic functions. Here, to minimize potential toxicity, this study generated CD31-targeting liposomes with encapsulated Fasudil, a clinically relevant Rho kinase inhibitor, and successfully targeted endothelial cells. In this proof-of-principle study, the efficient Fasudil delivery, its impact on the endothelial signaling, morphometric alterations, and angiogenic functions verify the benefits of site-targeted antiangiogenic therapy.


Subject(s)
Endothelial Cells , Vascular Endothelial Growth Factor A , Humans , Endothelial Cells/metabolism , HEK293 Cells , Liposomes , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , Vascular Endothelial Growth Factor A/metabolism
8.
Front Pharmacol ; 13: 823132, 2022.
Article in English | MEDLINE | ID: mdl-35242036

ABSTRACT

Cannabinoid-based therapies are increasingly being used by cancer patients to treat chemotherapy-induced nausea and vomiting. Recently, cannabinoids have gained increased attention for their effects on cancer growth. Indeed, the effect of CB2 (JWH-015, JWH-133) agonists on breast cancer models have shown to reduce the size of breast cancer tumors. However, these studies assessing breast cancer progression were using CB2 agonist administered early into the cancer progression therefore assessing their effects on already established tumors is a critical need. In our study, we evaluate tumor growth using an ectopic xenograft ovarian (SKOV-3 and OVCAR-5) cancer model. The impact of chronic (30 days) administration of CB2 (JWH-133) agonist will be evaluated and started on 30 days of ectopic ovarian tumors. We will then evaluate and determine the mechanisms involved in ovarian cancer tumor growth by measuring levels of anandamide and 2-arachidonoyl glycerol as well as protein levels of CB1, CB2, ERα, ERß, GPER, TNFα, IL-1ß and IL-6 in ovarian and tumor tissues. Our results demonstrate a significant increase in ectopic ovarian tumor growth following chronic administration of JWH-133. Ovarian cancer tumor tissues chronically (30 days) treated with JWH-133 in comparison to vehicle treated groups showed an increase in endocannabinoid (AEA and 2-AG) and protein (CB2 and TNFα) levels with a decrease in GPER protein levels. Interestingly, our study emphasizes the importance of studying the impact of cannabinoid compounds on already established tumors to improve our understanding of cannabinoid-based therapies and, therefore better address clinical needs in cancer patients.

9.
ACS Chem Neurosci ; 13(2): 217-228, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34978174

ABSTRACT

The dopaminergic system is involved in the regulation of immune responses in various homeostatic and disease conditions. For conditions such as Parkinson's disease and multiple sclerosis (MS), pharmacological modulation of dopamine (DA) system activity is thought to have therapeutic relevance, providing the basis for using dopaminergic agents as a treatment of relevant states. In particular, it was proposed that restoration of DA levels may inhibit neuroinflammation. We have recently reported a new class of dopamine transporter (DAT) inhibitors with high selectivity to the DAT over other G-protein coupled receptors tested. Here, we continue their evaluation as monoamine transporter inhibitors. Furthermore, we show that the urea-like DAT inhibitor (compound 5) has statistically significant anti-inflammatory effects and attenuates motor deficits and pain behaviors in the experimental autoimmune encephalomyelitis model mimicking clinical signs of MS. To the best of our knowledge, this is the first study reporting the beneficial effects of DAT inhibitor-based treatment in animals with induced autoimmune encephalomyelitis, and the observed results provide additional support to the model of DA-related neuroinflammation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Dopamine Plasma Membrane Transport Proteins , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Multiple Sclerosis/drug therapy , Neuroinflammatory Diseases , Urea
10.
Curr Top Med Chem ; 21(23): 2101-2108, 2021.
Article in English | MEDLINE | ID: mdl-34561982

ABSTRACT

Modulators of quorum sensing pathways in Pseudomonas aeruginosa (PA) gain attention due to their potential therapeutic applications. These chemical agents are viewed as anti-virulence agents capable of increasing the existing therapeutic agents' efficacy against resistant clinical strains. Additionally, they can be utilized in developing anticancer therapeutics, whole-cell biosensors, and artificial biological systems. In this mini-review, we summarize recent (2015-2021) publications on PA's QS modulation.


Subject(s)
Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Quorum Sensing/drug effects , Antineoplastic Agents , Biosensing Techniques , Pseudomonas aeruginosa/pathogenicity , Virulence/drug effects
11.
J Control Release ; 334: 237-247, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33915222

ABSTRACT

ROCK, one of the downstream regulators of Rho, controls actomyosin cytoskeleton organization, stress fiber formation, smooth muscle contraction, and cell migration. ROCK plays an important role in the pathologies of cerebral and coronary vasospasm, hypertension, cancer, and arteriosclerosis. Pharmacological-induced systemic inhibition of ROCK affects both the pathological and physiological functions of Rho-kinase, resulting in hypotension, increased heart rate, decreased lymphocyte count, and eventually cardiovascular collapse. To overcome the adverse effects of systemic ROCK inhibition, we developed a bioreductive prodrug of a ROCK inhibitor, fasudil, that functions selectively under hypoxic conditions. By masking fasudil's active site with a bioreductive 4-nitrobenzyl group, we synthesized a prodrug of fasudil that is inactive in normoxia. Reduction of the protecting group initiated by hypoxia reveals an electron-donating substituent that leads to fragmentation of the parent molecule. Under normoxia the fasudil prodrug displayed significantly reduced activity against ROCK compared to its parent compound, but under severe hypoxia the prodrug was highly effective in suppressing ROCK activity. Under hypoxia the prodrug elicited an antiproliferative effect on disease-afflicted pulmonary arterial smooth muscle cells and pulmonary arterial endothelial cells. The prodrug displayed a long plasma half-life, remained inactive in the blood, and produced no drop in systemic blood pressure when compared with fasudil-treated controls. Due to its selective nature, our hypoxia-activated fasudil prodrug could be used to treat diseases where tissue-hypoxia or hypoxic cells are the pathological basis of the disease.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine , Hypoxia , Prodrugs , Protein Kinase Inhibitors , rho-Associated Kinases , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/adverse effects , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Endothelial Cells , Humans , Hypoxia/drug therapy , Prodrugs/adverse effects , Prodrugs/pharmacology , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacology , rho-Associated Kinases/antagonists & inhibitors
12.
Eur J Med Chem ; 209: 112866, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33039722

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive type of cancer characterized by higher metastatic and reoccurrence rates, where approximately one-third of TNBC patients suffer from the metastasis in the brain. At the same time, TNBC shows good responses to chemotherapy, a feature that fuels the search for novel compounds with therapeutic potential in this area. Recently, we have identified novel urea-based compounds with cytotoxicity against selected cell lines and with the ability to cross the blood-brain barrier in vivo. We have synthesized and analyzed a library of more than 40 compounds to elucidate the key features responsible for the observed activity. We have also identified FGFR1 as a molecular target that is affected by the presence of these compounds, confirming our data using in silico model. Overall, we envision that these compounds can be further developed for the potential treatment of metastatic breast cancer.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Urea/analogs & derivatives , Urea/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Cell Line, Tumor , Drug Design , Female , Humans , Mice, Inbred C57BL , Molecular Docking Simulation , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Structure-Activity Relationship , Triple Negative Breast Neoplasms/metabolism , Urea/pharmacokinetics
13.
Cancers (Basel) ; 12(5)2020 May 17.
Article in English | MEDLINE | ID: mdl-32429547

ABSTRACT

Chemoprevention of lung cancer is thought to significantly reduce the risk of acquiring these conditions in the subpopulation of patients with underlying health issues, such as chronic obstructive pulmonary disorder and smoking-associated lung problems. Many strategies have been tested in the previous decades, with very few translating to successful clinical trials in specific subpopulations of patients. In this review, we analyze these strategies, as well as new approaches that have emerged throughout the last few years, including synthetic lethality concept and microbiome-induced regulation of lung carcinogenesis. Overall, the continuous effort in the area of lung chemoprevention is required to develop practical therapeutical approaches. Given the inconsistency of results obtained in clinical trials targeting lung cancer chemoprevention in various subgroups of patients that differ in the underlying health condition, race, and gender, we believe that individualized approaches will have more promise than generalized treatments.

14.
J Neurochem ; 153(1): 120-137, 2020 04.
Article in English | MEDLINE | ID: mdl-31486527

ABSTRACT

Previous studies documented up-regulation of peptidase neurolysin (Nln) after brain ischemia, however, the significance of Nln function in the post-stroke brain remained unknown. The aim of this study was to assess the functional role of Nln in the brain after ischemic stroke. Administration of a specific Nln inhibitor Agaricoglyceride A (AgaA) to mice after stroke in a middle cerebral artery occlusion model, dose-dependently aggravated injury measured by increased infarct and edema volumes, blood-brain barrier disruption, increased levels of interleukin 6 and monocyte chemoattractant protein-1, neurological and motor deficit 24 h after stroke. In this setting, AgaA resulted in inhibition of Nln in the ischemic hemisphere leading to increased levels of Nln substrates bradykinin, neurotensin, and substance P. AgaA lacked effects on several physiological parameters and appeared non-toxic to mice. In a reverse approach, we developed an adeno-associated viral vector (AAV2/5-CAG-Nln) to overexpress Nln in the mouse brain. Applicability of AAV2/5-CAG-Nln to transduce catalytically active Nln was confirmed in primary neurons and in vivo. Over-expression of Nln in the mouse brain was also accompanied by decreased levels of its substrates. Two weeks after in vivo transduction of Nln using the AAV vector, mice were subjected to middle cerebral artery occlusion and the same outcome measures were evaluated 72 h later. These experiments revealed that abundance of Nln in the brain protects animals from stroke. This study is the first to document functional significance of Nln in pathophysiology of stroke and provide evidence that Nln is an endogenous mechanism functioning to preserve the brain from ischemic injury.


Subject(s)
Brain/physiopathology , Metalloendopeptidases/physiology , Stroke/physiopathology , Animals , Edema , Gene Expression Regulation , Glycerides/pharmacology , Infarction, Middle Cerebral Artery , Male , Metalloendopeptidases/antagonists & inhibitors , Metalloendopeptidases/genetics , Mice , Recombinant Proteins/drug effects , Stroke/etiology , Stroke/pathology , Transfection
15.
Eur J Med Chem ; 185: 111800, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31706639

ABSTRACT

Anti-virulence approaches in the treatment of Pseudomonas aeruginosa (PA)-induced infections have shown clinical potential in multiple in vitro and in vivo studies. However, development of these compounds is limited by several factors, including the lack of molecules capable of penetrating the membrane of gram-negative organisms. Here, we report the identification of novel structurally diverse compounds that inhibit PqsR and LasR-based signaling and diminish virulence factor production and biofilm growth in two clinically relevant strains of P. aeruginosa. It is the first report where potential anti-virulent agents were evaluated for inhibition of several virulence factors of PA. Finally, co-treatment with these inhibitors significantly reduced the production of virulence factors induced by the presence of sub-inhibitory levels of ciprofloxacin. Further, we have analyzed the drug-likeness profile of designed compounds using quantitative estimates of drug-likeness (QED) and confirmed their potential as hit molecules for further development.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Drug Design , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Ciprofloxacin/chemical synthesis , Ciprofloxacin/chemistry , Dose-Response Relationship, Drug , Molecular Structure , Structure-Activity Relationship , Virulence/drug effects , Virulence Factors/antagonists & inhibitors , Virulence Factors/biosynthesis
16.
ACS Chem Neurosci ; 10(1): 518-527, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30188693

ABSTRACT

Allosteric modulators have attracted significant interest as an alternate strategy to modulate CB1 receptor signaling for therapeutic benefits that may avoid the adverse effects associated with orthosteric ligands. Here we extended our previous structure-activity relationship studies on the diarylurea-based CB1 negative allosteric modulators (NAMs) by introducing five-membered heterocycles to replace the 5-pyrrolidinylpyridinyl group in PSNCBAM-1 (1), one of the first generation CB1 allosteric modulators. Many of these compounds had comparable potency to 1 in blocking the CB1 agonist CP55,940 stimulated calcium mobilization and [35S]GTP-γ-S binding. Similar to 1, most compounds showed positive cooperativity by increasing [3H]CP55,940 binding, consistent with the positive allosteric modulator (PAM)-antagonist mechanism. Interestingly, these compounds exhibited differences in ability to increase specific binding of [3H]CP55,940 and decrease binding of the antagonist [3H]SR141716. In saturation binding studies, only increases in [3H]CP55,940 Bmax, but not Kd, were observed, suggesting that these compounds stabilize low affinity receptors into a high affinity state. Among the series, the 2-pyrrolyl analogue (13) exhibited greater potency than 1 in the [35S]GTP-γ-S binding assay and significantly enhanced the maximum binding level in the [3H]CP5,5940 binding assay, indicating greater CB1 receptor affinity and/or cooperativity.


Subject(s)
Allosteric Regulation/drug effects , Phenylurea Compounds/pharmacology , Pyridines/pharmacology , Receptor, Cannabinoid, CB1/drug effects , Signal Transduction/drug effects , Animals , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , HEK293 Cells , Humans , Phenylurea Compounds/chemistry , Pyridines/chemistry , Structure-Activity Relationship
17.
Bioorg Med Chem Lett ; 28(23-24): 3652-3657, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30389290

ABSTRACT

Several recent reports have highlighted the feasibility of the use of penfluridol, a well-known antipsychotic agent, as a chemotherapeutic agent. In vivo experiments have confirmed the cytotoxic activity of penfluridol in triple-negative breast cancer model, lung cancer model, and further studies have been proposed to assess its anticancer activity and viability for the treatment of glioblastomas. However, penfluridol anticancer activity was observed at a dosage significantly higher than that administered in antipsychotic therapy, thus raising the concern for the potential onset of CNS side effects in patients undergoing intensive pharmacological treatment. In this study, we evaluate the potential CNS toxicity of penfluridol side by side with a set of analogs.


Subject(s)
Antineoplastic Agents/chemistry , Penfluridol/analogs & derivatives , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antipsychotic Agents/chemistry , Antipsychotic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Central Nervous System/drug effects , Central Nervous System/metabolism , Disease Models, Animal , Female , Humans , Lung Neoplasms/drug therapy , Mice , Mice, Inbred C57BL , Penfluridol/metabolism , Penfluridol/pharmacology , Penfluridol/therapeutic use , Protein Binding , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship , Triple Negative Breast Neoplasms/drug therapy
18.
ACS Chem Neurosci ; 9(12): 2984-2996, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30028943

ABSTRACT

The naturally occurring indole alkaloid des-formylflustrabromine (dFBr; 1) is one of the first agents shown to act as a selective positive allosteric modulator (PAM) at α4ß2 nicotinic acetylcholine receptors (nAChRs). We previously deconstructed this agent to determine which of its structural features contribute to its actions and have identified an agent that might serve as the basis for a " working pharmacophore". Here, we elaborate the dFBr (1; EC50 = 0.2 µM) structure to identify how various structural modifications impact its actions. Electrophysiological studies with Xenopus laevis oocytes identified several compounds with dFBr-like potency and one, the 5-bromo analogue of 1 (i.e., 5-bromo dFBr; 25; EC50 = 0.4 µM), with more than twice the efficacy of 1 as a PAM at α4ß2 nAChRs.


Subject(s)
Acetylcholine/pharmacology , Cholinergic Agonists/pharmacology , Hydrocarbons, Brominated/pharmacology , Indole Alkaloids/pharmacology , Receptors, Nicotinic/drug effects , Allosteric Regulation , Animals , Hydrocarbons, Brominated/chemistry , Indole Alkaloids/chemistry , Oocytes , Patch-Clamp Techniques , Receptors, Nicotinic/metabolism , Structure-Activity Relationship , Xenopus laevis
19.
Mycotoxin Res ; 34(4): 257-268, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30006720

ABSTRACT

Cerebral fungal infections represent an important public health concern, where a key element of pathophysiology is the ability of the fungi to cross the blood-brain barrier (BBB). Yet the mechanism used by micro-organisms to cross such a barrier and invade the brain parenchyma remains unclear. This study investigated the effects of gliotoxin (GTX), a mycotoxin secreted by Aspergillus fumigatus, on the BBB using brain microvascular endothelial cells (BMECs) derived from induced pluripotent stem cells (iPSCs). We observed that both acute (2 h) and prolonged (24 h) exposure to GTX at the level of 1 µM or higher compromised BMECs monolayer integrity. Notably, acute exposure was sufficient to disrupt the barrier function in iPSC-derived BMECs, resulting in decreased transendothelial electrical resistance (TEER) and increased fluorescein permeability. Further, our data suggest that such disruption occurred without affecting tight junction complexes, via alteration of cell-matrix interactions, alterations in F-actin distribution, through a protein kinase C-independent signaling. In addition to its effect on the barrier function, we have observed a low permeability of GTX across the BBB. This fact can be partially explained by possible interactions of GTX with membrane proteins. Taken together, this study suggests that GTX may contribute in cerebral invasion processes of Aspergillus fumigatus by altering the blood-brain barrier integrity without disrupting tight junction complexes.


Subject(s)
Aspergillus fumigatus/metabolism , Blood-Brain Barrier/drug effects , Endothelial Cells/drug effects , Gliotoxin/metabolism , Gliotoxin/toxicity , Permeability/drug effects , Aspergillosis/physiopathology , Blood-Brain Barrier/pathology , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/physiology , Models, Biological
20.
Angiogenesis ; 21(1): 1-14, 2018 02.
Article in English | MEDLINE | ID: mdl-29110215

ABSTRACT

Commensal microbiota inhabit all the mucosal surfaces of the human body. It plays significant roles during homeostatic conditions, and perturbations in numbers and/or products are associated with several pathological disorders. Angiogenesis, the process of new vessel formation, promotes embryonic development and critically modulates several biological processes during adulthood. Indeed, deregulated angiogenesis can induce or augment several pathological conditions. Accumulating evidence has implicated the angiogenic process in various microbiota-associated human diseases. Herein, we critically review diseases that are regulated by microbiota and are affected by angiogenesis, aiming to provide a broad understanding of how angiogenesis is involved and how microbiota regulate angiogenesis in microbiota-associated human conditions.


Subject(s)
Microbiota , Neoplasms , Neovascularization, Pathologic , Gastritis/microbiology , Gastritis/pathology , Humans , Inflammation/microbiology , Inflammation/pathology , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/pathology , Neoplasms/blood supply , Neoplasms/microbiology , Neoplasms/pathology , Neovascularization, Pathologic/microbiology , Neovascularization, Pathologic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...