Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Immunol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38912839

ABSTRACT

T cells producing IFN-γ have long been considered a stalwart for immune protection against Mycobacterium tuberculosis (Mtb), but their relative importance to pulmonary immunity has been challenged by murine studies that achieved protection by adoptively transferred Mtb-specific IFN-γ-/- T cells. Using IFN-γ-/- T cell chimeric mice and adoptive transfer of IFN-γ-/- T cells into TCRß-/-δ-/- mice, we demonstrate that control of lung Mtb burden is in fact dependent on T cell-derived IFN-γ, and, furthermore, mice selectively deficient in T cell-derived IFN-γ develop exacerbated disease compared with T cell-deficient control animals, despite equivalent lung bacterial burdens. Deficiency in T cell-derived IFN-γ skews infected and bystander monocyte-derived macrophages to an alternative M2 phenotype and promotes neutrophil and eosinophil influx. Our studies support an important role for T cell-derived IFN-γ in pulmonary immunity against tuberculosis.

2.
bioRxiv ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38659794

ABSTRACT

Pulmonary Mycobacterium tuberculosis (Mtb) infection results in highly heterogeneous lesions ranging from granulomas with central necrosis to those primarily comprised of alveolitis. While alveolitis has been associated with prior immunity in human post-mortem studies, the drivers of these distinct pathologic outcomes are poorly understood. Here, we show that these divergent lesion structures can be modeled in C3HeB/FeJ mice and are regulated by prior immunity. Using quantitative imaging, scRNAseq, and flow cytometry, we demonstrate that Mtb infection in the absence of prior immunity elicits dysregulated neutrophil recruitment and necrotic granulomas. In contrast, prior immunity induces rapid recruitment and activation of T cells, local macrophage activation, and diminished late neutrophil responses. Depletion studies at distinct infection stages demonstrated that neutrophils are required for early necrosis initiation and necrosis propagation at chronic stages, whereas early CD4 T cell responses prevent neutrophil feedforward circuits and necrosis. Together, these studies reveal fundamental determinants of tuberculosis lesion structure and pathogenesis, which have important implications for new strategies to prevent or treat tuberculosis.

3.
Nat Microbiol ; 9(4): 949-963, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38528148

ABSTRACT

A polymorphism causing deficiencies in Toll-interacting protein (TOLLIP), an inhibitory adaptor protein affecting endosomal trafficking, is associated with increased tuberculosis (TB) risk. It is, however, unclear how TOLLIP affects TB pathogenesis. Here we show that TB severity is increased in Tollip-/- mice, characterized by macrophage- and T cell-driven inflammation, foam cell formation and lipid accumulation. Tollip-/- alveolar macrophages (AM) specifically accumulated lipid and underwent necrosis. Transcriptional and protein analyses of Mycobacterium tuberculosis (Mtb)-infected, Tollip-/- AM revealed increased EIF2 signalling and downstream upregulation of the integrated stress response (ISR). These phenotypes were linked, as incubation of the Mtb lipid mycolic acid with Mtb-infected Tollip-/- AM activated the ISR and increased Mtb replication. Correspondingly, the ISR inhibitor, ISRIB, reduced Mtb numbers in AM and improved Mtb control, overcoming the inflammatory phenotype. In conclusion, targeting the ISR offers a promising target for host-directed anti-TB therapy towards improved Mtb control and reduced immunopathology.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , Macrophages, Alveolar/microbiology , Tuberculosis/microbiology , Mycobacterium tuberculosis/physiology , Macrophages/microbiology , Lipids , Intracellular Signaling Peptides and Proteins/metabolism
4.
Annu Rev Immunol ; 40: 589-614, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35130029

ABSTRACT

Pulmonary granulomas are widely considered the epicenters of the immune response to Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). Recent animal studies have revealed factors that either promote or restrict TB immunity within granulomas. These models, however, typically ignore the impact of preexisting immunity on cellular organization and function, an important consideration because most TB probably occurs through reinfection of previously exposed individuals. Human postmortem research from the pre-antibiotic era showed that infections in Mtb-naïve individuals (primary TB) versus those with prior Mtb exposure (postprimary TB) have distinct pathologic features. We review recent animal findings in TB granuloma biology, which largely reflect primary TB. We also discuss our current understanding of postprimary TB lesions, about which much less is known. Many knowledge gaps remain, particularly regarding how preexisting immunity shapes granuloma structure and local immune responses at Mtb infection sites.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Granuloma/etiology , Humans , Lung/microbiology , Lung/pathology
5.
Cell Host Microbe ; 29(4): 594-606.e6, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33711270

ABSTRACT

CD4 T cell effector function is required for optimal containment of Mycobacterium tuberculosis (Mtb) infection. IFNÉ£ produced by CD4 T cells is a key cytokine that contributes to protection. However, lung-infiltrating CD4 T cells have a limited ability to produce IFNÉ£, and IFNÉ£ plays a lesser protective role within the lung than at sites of Mtb dissemination. In a murine infection model, we observed that IFNÉ£ production by Mtb-specific CD4 T cells is rapidly extinguished within the granuloma but not within unaffected lung regions, suggesting localized immunosuppression. We identified a signature of TGFß signaling within granuloma-infiltrating T cells in both mice and rhesus macaques. Selective blockade of TGFß signaling in T cells resulted in an accumulation of terminally differentiated effector CD4 T cells, improved IFNÉ£ production within granulomas, and reduced bacterial burdens. These findings uncover a spatially localized immunosuppressive mechanism associated with Mtb infection and provide potential targets for host-directed therapy.


Subject(s)
Granuloma/immunology , T-Lymphocytes/immunology , Transforming Growth Factor beta/metabolism , Tuberculosis/immunology , Adaptive Immunity , Animals , CD4-Positive T-Lymphocytes , Cell Death , Cytokines , Disease Models, Animal , Female , Granuloma/microbiology , Inflammation , Interferon-gamma , Lung/microbiology , Macaca mulatta , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium tuberculosis , Th1 Cells
6.
Cell Host Microbe ; 29(1): 68-82.e5, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33142108

ABSTRACT

Tuberculosis (TB) is a heterogeneous disease manifesting in a subset of individuals infected with aerosolized Mycobacterium tuberculosis (Mtb). Unlike human TB, murine infection results in uniformly high lung bacterial burdens and poorly organized granulomas. To develop a TB model that more closely resembles human disease, we infected mice with an ultra-low dose (ULD) of between 1-3 founding bacteria, reflecting a physiologic inoculum. ULD-infected mice exhibited highly heterogeneous bacterial burdens, well-circumscribed granulomas that shared features with human granulomas, and prolonged Mtb containment with unilateral pulmonary infection in some mice. We identified blood RNA signatures in mice infected with an ULD or a conventional Mtb dose (50-100 CFU) that correlated with lung bacterial burdens and predicted Mtb infection outcomes across species, including risk of progression to active TB in humans. Overall, these findings highlight the potential of the murine TB model and show that ULD infection recapitulates key features of human TB.


Subject(s)
Disease Models, Animal , Mycobacterium tuberculosis/pathogenicity , Tuberculosis, Pulmonary , Animals , Bacterial Load , Biomarkers/blood , Disease Progression , Female , Granuloma/pathology , Humans , Lung/microbiology , Macaca mulatta , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis/growth & development , RNA-Seq , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology
7.
Cell Rep ; 31(3): 107523, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32320656

ABSTRACT

Recently developed approaches for highly multiplexed imaging have revealed complex patterns of cellular positioning and cell-cell interactions with important roles in both cellular- and tissue-level physiology. However, tools to quantitatively study cellular patterning and tissue architecture are currently lacking. Here, we develop a spatial analysis toolbox, the histo-cytometric multidimensional analysis pipeline (CytoMAP), which incorporates data clustering, positional correlation, dimensionality reduction, and 2D/3D region reconstruction to identify localized cellular networks and reveal features of tissue organization. We apply CytoMAP to study the microanatomy of innate immune subsets in murine lymph nodes (LNs) and reveal mutually exclusive segregation of migratory dendritic cells (DCs), regionalized compartmentalization of SIRPα- dermal DCs, and preferential association of resident DCs with select LN vasculature. The findings provide insights into the organization of myeloid cells in LNs and demonstrate that CytoMAP is a comprehensive analytics toolbox for revealing features of tissue organization in imaging datasets.


Subject(s)
Lymphoid Tissue/metabolism , Myeloid Cells/metabolism , Animals , Mice , Spatial Analysis
8.
J Immunol ; 203(4): 807-812, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31308091

ABSTRACT

Growing evidence suggests the outcome of Mycobacterium tuberculosis infection is established rapidly after exposure, but how the current tuberculosis vaccine, bacillus Calmette-Guérin (BCG), impacts early immunity is poorly understood. In this study, we found that murine BCG immunization promotes a dramatic shift in infected cell types. Although alveolar macrophages are the major infected cell for the first 2 weeks in unimmunized animals, BCG promotes the accelerated recruitment and infection of lung-infiltrating phagocytes. Interestingly, this shift is dependent on CD4 T cells, yet does not require intrinsic recognition of Ag presented by infected alveolar macrophages. M. tuberculosis-specific T cells are first activated in lung regions devoid of infected cells, and these events precede vaccine-induced reduction of the bacterial burden, which occurs only after the colocalization of T cells and infected cells. Understanding how BCG alters early immune responses to M. tuberculosis provides new avenues to improve upon the immunity it confers.


Subject(s)
BCG Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , Macrophages, Alveolar/immunology , Tuberculosis, Pulmonary/immunology , Animals , Lymphocyte Activation/immunology , Macrophages/immunology , Macrophages/microbiology , Macrophages, Alveolar/microbiology , Mice , Mice, Inbred C57BL , Tuberculosis, Pulmonary/prevention & control
9.
Cell Host Microbe ; 24(3): 439-446.e4, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30146391

ABSTRACT

Mycobacterium tuberculosis (Mtb) infection is initiated in the distal airways, but the bacteria ultimately disseminate to the lung interstitium. Although various cell types, including alveolar macrophages (AM), neutrophils, and permissive monocytes, are known to be infected with Mtb, the initially infected cells as well as those that mediate dissemination from the alveoli to the lung interstitium are unknown. In this study, using a murine infection model, we reveal that early, productive Mtb infection occurs almost exclusively within airway-resident AM. Thereafter Mtb-infected, but not uninfected, AM localize to the lung interstitium through mechanisms requiring an intact Mtb ESX-1 secretion system. Relocalization of infected AM precedes Mtb uptake by recruited monocyte-derived macrophages and neutrophils. This dissemination process is driven by non-hematopoietic host MyD88/interleukin-1 receptor inflammasome signaling. Thus, interleukin-1-mediated crosstalk between Mtb-infected AM and non-hematopoietic cells promotes pulmonary Mtb infection by enabling infected cells to disseminate from the alveoli to the lung interstitium.


Subject(s)
Macrophages, Alveolar/immunology , Mycobacterium tuberculosis/immunology , Pulmonary Alveoli/immunology , Pulmonary Alveoli/microbiology , Tuberculosis/immunology , Tuberculosis/microbiology , Animals , Bacterial Proteins/metabolism , Granuloma/microbiology , Granuloma/pathology , Immunity, Innate/immunology , Inflammation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/metabolism , Receptors, Interleukin-1/metabolism
10.
Ann Clin Microbiol Antimicrob ; 17(1): 5, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29463249

ABSTRACT

OBJECTIVES: In vitro trends of cefazolin and ceftriaxone susceptibilities from pediatric clinical isolates of methicillin-susceptible Staphylococcus aureus (MSSA) between 2011 and 2016 were analyzed for surveillance. METHODS: Our laboratory continues to use agar disk diffusion for staphylococcal susceptibilities applying Clinical Laboratory Standard Institute's 2012 breakpoints. RESULTS: A total of 3992 MSSA clinical isolates in the last 6 years were analyzed for their in vitro cefazolin and ceftriaxone susceptibilities. While all MSSA isolates exhibited cefazolin susceptibilities within the "susceptible" zone range, there have been a proportion of isolates with ceftriaxone susceptibilities falling in "intermediate" zones, ranging from 2.6% in 2011 to 8.3% in 2016. CONCLUSIONS: Cefazolin continues to be the recommended agent for MSSA treatment at our institution, reflected by the finding that only 2% (6/321) of patients who received ceftriaxone as definitive therapy for MSSA bacteremia during the study period. We have confirmed the cefoxitin-predicted MSSA susceptibility to cefazolin, but have found concerning drifts in ceftriaxone susceptibilities by continued in vitro monitoring over the last 6 years.


Subject(s)
Cefazolin/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Cefazolin/therapeutic use , Cefoxitin/pharmacology , Ceftriaxone/pharmacology , Disk Diffusion Antimicrobial Tests , Humans , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Staphylococcal Infections/drug therapy , Staphylococcus aureus/pathogenicity
12.
Infect Immun ; 80(2): 787-97, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22124658

ABSTRACT

CD4(+) T cells are the key players of vaccine resistance to fungi. The generation of effective T cell-based vaccines requires an understanding of how to induce and maintain CD4(+) T cells and memory. The kinetics of fungal antigen (Ag)-specific CD4(+) T cell memory development has not been studied due to the lack of any known protective epitopes and clonally restricted T cell subsets with complementary T cell receptors (TCRs). Here, we investigated the expansion and function of CD4(+) T cell memory after vaccination with transgenic (Tg) Blastomyces dermatitidis yeasts that display a model Ag, Eα-mCherry (Eα-mCh). We report that Tg yeast led to Eα display on Ag-presenting cells and induced robust activation, proliferation, and expansion of adoptively transferred TEa cells in an Ag-specific manner. Despite robust priming by Eα-mCh yeast, antifungal TEa cells recruited and produced cytokines weakly during a recall response to the lung. The addition of exogenous Eα-red fluorescent protein (RFP) to the Eα-mCh yeast boosted the number of cytokine-producing TEa cells that migrated to the lung. Thus, model epitope expression on yeast enables the interrogation of Ag presentation to CD4(+) T cells and primes Ag-specific T cell activation, proliferation, and expansion. However, the limited availability of model Ag expressed by Tg fungi during T cell priming blunts the downstream generation of effector and memory T cells.


Subject(s)
Antigens, Fungal/metabolism , Blastomyces/genetics , CD4-Positive T-Lymphocytes/physiology , Fungal Proteins/metabolism , Receptors, Antigen, T-Cell/genetics , Animals , Antigens, Fungal/genetics , Blastomyces/immunology , Cell Differentiation , Cell Movement , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Lung/cytology , Lung Diseases, Fungal/immunology , Lung Diseases, Fungal/microbiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Thy-1 Antigens/genetics , Thy-1 Antigens/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...