Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
2.
J Perinatol ; 44(4): 532-538, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38326606

ABSTRACT

INTRODUCTION: There is an extensive body of research regarding neurological outcomes following neonatal hypoxic-ischemic encephalopathy (HIE) treated with therapeutic hypothermia (TH), with limited data on growth outcomes. We examined perinatal characteristics associated with postnatal growth in this population. METHODS: Convenience cohort of 66 infants with HIE who underwent TH and participated in follow-up at 24 months of age were included. Regression modeling including perinatal anthropomorphics, markers of HIE, and systemic injury was used to evaluate growth at 24 months. RESULTS: Birth head circumference was associated with weight (p = 0.036). MRI severity, pH at admission and birth head circumference were associated with height (p = 0.043, p = 0.015 and p = 0.043 respectively). MRI severity and length of intubation were associated with head circumference (p = 0.038 and p < 0.001 respectively). CONCLUSION: There was a significant association between specific early factors and growth at 24 months among infants with HIE treated with TH.


Subject(s)
Hypothermia, Induced , Hypothermia , Hypoxia-Ischemia, Brain , Infant, Newborn , Infant , Pregnancy , Female , Humans , Child, Preschool , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/complications , Hypothermia/complications , Cephalometry
3.
Life (Basel) ; 13(8)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37629603

ABSTRACT

BACKGROUND: Cutting-edge neonatal programs diagnose cerebral palsy (CP) or "high risk of CP" using validated neurobehavioral exams in combination with risk history and neuroimaging. In rat models, digital gait analyses are the gold standard adult assessment, but tools in infant rats are limited. Refinement of infant rat neurobehavioral correlates of CP will establish translational behavioral biomarkers to delineate early mechanisms of CP in both humans and rodent models of CP. OBJECTIVE: To facilitate precision medicine approaches of neurodevelopmental health and integrate basic and clinical research approaches for CP, we developed and piloted a new assay of neonatal rat neurobehavior to mimic human neonate exams. METHODS: Our established rat model of CP secondary to chorioamnionitis (CHORIO) that induces bilateral motor impairment reminiscent of spastic CP was used. On postnatal day 10 (P10), 5 min videos were recorded of 26 (6 sham and 20 CHORIO) animals moving freely in a cage were reviewed by an evaluator trained in the human General Movements Assessment (GMA). Non-blinded observation revealed two behaviors that differed between rat pups in each group (time spent rearing; multi-dimensional nose sweeping; and sniffing). Each video was re-coded for these criteria by an evaluator blind to group status. Differences between sham and CP groups were analyzed using a Mann-Whitney U-test or Student's t-test (p < 0.05 level of significance). RESULTS: Neonatal rats with CP exhibited sensorimotor impairment and decreased spatial exploration. CP rats spent significantly less time rearing (17.85 ± 1.60 s vs. 34.8 ± 2.89 s, p = 0.007) and engaged in multi-dimensional nose sweeping and sniffing (2.2 ± 0.58 episodes vs. 5.5 ± 0.96 episodes, p = 0.03) than sham controls. CONCLUSIONS: These pilot findings of harmonized translational and precision biobehavioral assays provide an opportunity for increased expediency of clinical trials at the earliest stages of brain development.

4.
Pediatr Res ; 93(7): 1943-1954, 2023 Jun.
Article in English | MEDLINE | ID: mdl-34923579

ABSTRACT

BACKGROUND: To determine the association of gestational age (GA) and day of life (DOL) with the circulating serum concentration of six brain injury-associated biomarkers in non-brain injured neonates born between 23 and 41 weeks' GA. METHODS: In a multicenter prospective observational cohort study, serum CNS-insult, inflammatory and trophic proteins concentrations were measured daily in the first 7 DOL. RESULTS: Overall, 3232 serum samples were analyzed from 745 enrollees, median GA 32.3 weeks. BDNF increased 3.7% and IL-8 increased 8.9% each week of gestation. VEGF, IL-6, and IL-10 showed no relationship with GA. VEGF increased 10.8% and IL-8 18.9%, each DOL. IL-6 decreased by 15.8% each DOL. IL-10 decreased by 81.4% each DOL for DOL 0-3. BDNF did not change with DOL. Only 49.67% of samples had detectable GFAP and 33.15% had detectable NRGN. The odds of having detectable GFAP and NRGN increased by 53% and 11%, respectively, each week after 36 weeks' GA. The odds of having detectable GFAP and NRGN decreased by 15% and 8%, respectively, each DOL. CONCLUSIONS: BDNF and IL-8 serum concentrations vary with GA. VEGF and interleukin concentrations are dynamic in the first week of life, suggesting circulating levels should be adjusted for GA and DOL for clinically relevant assessment of brain injury. IMPACT: Normative data of six brain injury-related biomarkers is being proposed. When interpreting serum concentrations of brain injury biomarkers, it is key to adjust for gestational age at birth and day of life during the first week to correctly assess for clinical brain injury in neonates. Variation in levels of some biomarkers may be related to gestational and postnatal age and not necessarily pathology.


Subject(s)
Brain Injuries , Interleukin-10 , Infant, Newborn , Humans , Interleukin-6 , Prospective Studies , Brain-Derived Neurotrophic Factor , Interleukin-8 , Vascular Endothelial Growth Factor A , Gestational Age , Biomarkers , Brain Injuries/diagnosis
5.
Neuropsychology ; 37(1): 104-112, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36136791

ABSTRACT

OBJECTIVE: Little is known about how much effort to do well most people exert on cognitive testing. Here, we describe an experimental paradigm to manipulate and measure cognitive effort. METHOD: After baseline cognitive and performance validity testing (PVT), 38 participants were assigned to a standard (SI) or enhanced (EI) incentive condition. On retesting a week later, EI participants were told that they would receive a financial bonus whose amount depended on how much their retest performance improved over baseline. SI participants were told to do their best and promised a chance-based bonus. RESULTS: Larger improvements on retesting were assumed to reflect less effort at baseline. After calculating differences from baseline to follow-up, we compared the EI and SI groups using multivariate analysis of variance. We sought to identify predictors of lower cognitive effort at baseline by correlating change z scores with baseline PVT performance and other hypothesized markers of low cognitive effort. As hypothesized, the EI group showed larger improvements, including improvements on more cognitive tests, and were rated as and reported trying harder at retesting than the SI group. Standard PVT measures did not correlate with low baseline effort; however, resting one's head or slouching during cognitive testing signified low baseline cognitive effort. CONCLUSIONS: This study provides preliminary support for an experimental paradigm to manipulate and investigate cognitive effort, which still remains poorly understood. While PVTs can detect feigned cognitive impairment, they lack the sensitivity to detect low cognitive effort in persons who pass conventional PVT cutoffs. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Cognitive Dysfunction , Humans , Reproducibility of Results , Cognitive Dysfunction/psychology , Neuropsychological Tests , Multivariate Analysis , Motivation
7.
Dev Neurosci ; 44(4-5): 266-276, 2022.
Article in English | MEDLINE | ID: mdl-35358965

ABSTRACT

Cerebral palsy (CP) is the most common cause of physical disability for children worldwide. Many infants and toddlers are not diagnosed with CP until they fail to achieve obvious motor milestones. Currently, there are no effective pharmacologic interventions available for infants and toddlers to substantially improve their trajectory of neurodevelopment. Because children with CP from preterm birth also exhibit a sustained immune system hyper-reactivity, we hypothesized that neuro-immunomodulation with a regimen of repurposed endogenous neurorestorative medications, erythropoietin (EPO) and melatonin (MLT), could improve this trajectory. Thus, we administered EPO + MLT to rats with CP during human infant-toddler equivalency to determine whether we could influence gait patterns in mature animals. After a prenatal injury on embryonic day 18 (E18) that mimics chorioamnionitis at ∼25 weeks human gestation, rat pups were born and raised with their dam. Beginning on postnatal day 15 (P15), equivalent to human infant ∼1 year, rats were randomized to receive either a regimen of EPO + MLT or vehicle (sterile saline) through P20. Gait was assessed in young adult rats at P30 using computerized digital gait analyses including videography on a treadmill. Results indicate that gait metrics of young adult rats treated with an infantile cocktail of EPO + MLT were restored compared to vehicle-treated rats (p < 0.05) and similar to sham controls. These results provide reassuring evidence that pharmacological interventions may be beneficial to infants and toddlers who are diagnosed with CP well after the traditional neonatal window of intervention.


Subject(s)
Brain Injuries , Erythropoietin , Melatonin , Premature Birth , Animals , Brain Injuries/drug therapy , Erythropoietin/pharmacology , Female , Gait , Humans , Infant , Melatonin/pharmacology , Pregnancy , Rats
8.
Article in English | MEDLINE | ID: mdl-37396628

ABSTRACT

Opioid use during pregnancy continues to rise at alarming rates with a parallel trend in the number of infants and children exposed to opioid medications each year. Prenatal opioid exposure (POE) occurs at a critical timepoint in neurodevelopment disrupting intricate pathways essential for neural-immune maturation with the potential for devastating long-term consequences. Understanding the mechanisms underlying injury associated with POE is essential to address long-term outcomes and identify diagnostic and therapeutic biomarkers in this vulnerable patient population. Using an established preclinical model of POE, we investigated changes in cerebral and peripheral inflammation and peripheral blood mononuclear cell (PBMC) activity. We hypothesized that neuroinflammation, as defined by changes in specific cerebral immune cell populations, would exist in adult rats following POE concomitant with sustained peripheral immune hyperreactivity (SPIHR). Our data demonstrated alterations in cerebral immune cells at postnatal day 60 (P60) typified by increased regulatory T cells (p < 0.01) and neutrophils (p < 0.05) in rats with POE compared to controls. Evaluation of serum revealed increased levels of IL-6 (p < 0.05) and CXCL1 (p < 0.05) at P21 in rats with POE compared to controls with no significant difference in cytokine or chemokine levels between the two groups at P60. Additionally, PBMCs isolated from rats with POE at P21 demonstrated baseline hypersecretion of IL-6 (p < 0.01) and SPIHR with increased levels of TNF-α (p < 0.05) and CXCL1 (p < 0.05) following stimulation with LPS. At P60, however, there was no significant difference found in cytokine or chemokine levels secreted by PBMCs isolated from rats with POE at baseline or with LPS stimulation when compared to controls. Taken together, these data demonstrate cerebral inflammation months after prenatal opioid exposure and long after the resolution of systemic inflammation and SPIHR seen at toddler age equivalent. Chronic alterations in the cerebral immune cell populations secondary to prenatal opioid exposure may underly long-term consequences of developmental brain injury including deficits in cognition and attention. These findings may be invaluable to further investigations of precise biomarkers of injury and targeted therapeutics for this vulnerable population.

9.
Clin Neuropsychol ; 36(5): 1049-1068, 2022 07.
Article in English | MEDLINE | ID: mdl-34889701

ABSTRACT

OBJECTIVE: There is higher risk for autism spectrum disorder (ASD) across many pediatric neurological conditions characterized by vision impairment or hearing loss. Early and accurate identification of ASD is imperative in promoting access to appropriate and early evidenced-based intervention; however, differential diagnosis can be particularly challenging in children with sensory impairment given the heterogeneity of ASD combined with the impact of vision impairment or hearing loss/deafness on development and behavior. A neuropsychologist's unique expertise and appreciation of the interplay between sensory and behavioral manifestations can be valuable for making an early and accurate ASD diagnosis in children who are blind/visually impaired or deaf/hard-of-hearing. This article highlights clinical considerations when identifying ASD within the context of vision impairment or hearing loss/deafness. METHOD: We discuss clinical considerations for the early identification of ASD in children who are blind/visually impaired and deaf/hard-of-hearing. Information presented in the article is based on a critical review of the literature and the expertise of the author group. CONCLUSION: Ongoing development of clinical expertise and evidence-based assessment methods are important when informing the early differential diagnosis of ASD in individuals with sensory impairment. Accurate identification is also vital for the development of targeted interventions across the lifespan.


Subject(s)
Autism Spectrum Disorder , Deafness , Hearing Loss , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/diagnosis , Child , Hearing Loss/complications , Hearing Loss/diagnosis , Humans , Neuropsychological Tests , Vision, Ocular
10.
Front Neurol ; 12: 748150, 2021.
Article in English | MEDLINE | ID: mdl-34795631

ABSTRACT

Objective: To determine the changes due to therapeutic hypothermia (TH) exposure in the strength of association between traditional clinical and biochemical indicators of severity of neonatal hypoxic-ischemic encephalopathy (HIE) and serum biomarkers. We hypothesized that culmination of TH changes the strength of the relationships between traditional indicators of severity of HIE and serum biomarkers. Methods: This was a single-center observational cohort study of 178 neonates with HIE treated with TH and followed with serum biomarkers: (i) brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) (neurotrophins); (ii) tau and glial fibrillary acidic protein (GFAP) (neural cell injury); and (iii) interleukin 6 (IL-6), IL-8, and IL-10 (cytokines), during their first week of life. Adjusted mixed-effect models tested associations with HIE indicators in relation to TH exposure. Results: At admission, lower Apgar scores and base excess (BE) and higher lactate and nucleated red blood cell (NRBC) count correlated with higher Sarnat scores. These indicators of worse HIE severity, including higher Sarnat score, correlated with lower VEGF and higher tau, GFAP, and IL-10 levels at different time points. Within the first 24 h of life, patients with a Sarnat score >2 had lower VEGF levels, whereas only those with score of 3 also had higher GFAP and IL-10 levels. Tau levels increased during TH in patients with Sarnat score of 3, whereas tau and GFAP increased after TH in those with scores of 2. After adjustments, lower VEGF levels during TH and higher tau, GFAP, and IL-10 levels during and after TH were associated with worse Sarnat scores. Tau and GFAP relationship with Sarnat score became stronger after TH. Conclusion: Therapeutic hypothermia exerts an independent modulatory effect in the relationships between traditional indicators of severity of HIE and serum biomarkers after adjustments. Thus, the timing of biomarker testing in relation to TH exposure must be carefully considered if biomarkers are proposed for patient stratification in novel clinical trials.

11.
Neural Regen Res ; 16(3): 430-432, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32985461

ABSTRACT

Substance use, specifically the use of prescription and non-prescription opioids among pregnant women, is a major public health issue and chief contributor to the opioid crisis. The prevalence of Neonatal Opioid Withdrawal Syndrome has risen 5-fold in the past decade, and is a well-recognized consequence of perinatal opioid exposure. By contrast, the long-term damage to the developing brain from opioid medications is just beginning to be recognized as a serious concern. Published data suggest that opioid exposure commencing in utero negatively affects the maturation of the neural-immune system, and trajectory of central nervous system development. Methadone induces peripheral immune hyper-reactivity, lasting structural and microstructural brain injury, and significant deficits in executive function and cognitive control in adult animals following in utero exposure. Thus, to address the cascading public health crisis stemming from the multitude of infants with in utero opioid exposure who will grow up with altered neurodevelopmental trajectories, rigorous preclinical, mechanistic studies are required. Such studies will define the long-term sequelae of prenatal opioid exposure in an effort to develop appropriate and targeted interventions. Specifically, the development of novel fluid, neuroimaging and biobehavioral biomarkers will be the most useful to aid in early identification and treatment of opioid exposed infants with the greatest risk of poor clinical outcomes. These studies will be essential to understand how in utero insults determine brain structure and function in adulthood, and what targeted interventions will be required to improve long-term outcomes in the countless children being born exposed to opioids each year.

12.
Pediatrics ; 145(5)2020 05.
Article in English | MEDLINE | ID: mdl-32269135

ABSTRACT

BACKGROUND AND OBJECTIVES: Early diagnosis of cerebral palsy (CP) is critical in obtaining evidence-based interventions when plasticity is greatest. In 2017, international guidelines for early detection of CP were published on the basis of a systematic review of evidence. Our study aim was to reduce the age at CP diagnosis throughout a network of 5 diverse US high-risk infant follow-up programs through consistent implementation of these guidelines. METHODS: The study leveraged plan-do-study-act and Lean methodologies. The primary outcome was age at CP diagnosis. Data were acquired during the corresponding 9-month baseline and quarterly throughout study. Balancing measures were clinic no-show rates and parent perception of the diagnosis visit. Clinic teams conducted strengths, weaknesses, opportunities, and threats analyses, process flow evaluations, standardized assessments training, and parent questionnaires. Performance of a 3- to 4-month clinic visit was a critical process step because it included a Hammersmith Infant Neurologic Examination, a General Movements Assessment, and standardized assessments of motor function. RESULTS: The age at CP diagnosis decreased from a weighted average of 19.5 (95% confidence interval 16.2 to 22.8) to 9.5 months (95% confidence interval 4.5 to 14.6), with P = .008; 3- to 4-month visits per site increased from the median (interquartile range) 14 (5.2-73.7) to 54 (34.5-152.0), with P < .001; and no-show rates were not different. Parent questionnaires revealed positive provider perception with improvement opportunities for information content and understandability. CONCLUSIONS: Large-scale implementation of international guidelines for early detection of CP is feasible in diverse high-risk infant follow-up clinics. The initiative was received positively by families and without adversely affecting clinic operational flow. Additional parent support and education are necessary.


Subject(s)
Cerebral Palsy/diagnosis , Community Networks/standards , Neurologic Examination/standards , Practice Guidelines as Topic/standards , Quality Improvement/standards , Age Factors , Cerebral Palsy/therapy , Early Diagnosis , Female , Humans , Infant , Male , Neurologic Examination/methods
13.
Front Pain Res (Lausanne) ; 1: 553026, 2020.
Article in English | MEDLINE | ID: mdl-35295692

ABSTRACT

Chronic pain is prevalent in adults with cerebral palsy. We aimed to explore associations between chronic pain and somatosensory, motor, cognitive, etiologic, and environmental factors in adults with cerebral palsy. This cross-sectional study enrolled 17 adult participants with cerebral palsy (mean age 31 years; 8 female; Gross Motor Functional Classification Status levels I-V) able to self-report and 10 neurotypical adult volunteers (mean age 34 years; 9 female). Participants reported pain characteristics, demographics, and affective factors. Physical examination included somatosensory and motor evaluation. Between-group comparisons used a ranksum test, and correlation analyses estimated effect size in terms of shared variance (ρ2). Individuals with cerebral palsy reported greater pain intensity, neuropathic qualities, and nociceptive qualities than control participants. Higher pain intensity was associated with female gender (ρ2 = 16%), anxiety/depression symptoms (ρ2 = 10%), and lower household income (ρ2 = 19%). It was also associated with better communicative ability (ρ2 = 21%), spinothalamic (sharp/temperature) sensory abnormalities (ρ2 = 33%), and a greater degree of prematurity (ρ2 = 17%). This study highlights similarity of chronic pain associations in people with cerebral palsy with patterns seen in other populations with chronic pain. Spinothalamic sensory abnormalities suggest central pain mechanisms.

14.
Brain Behav Immun ; 84: 45-58, 2020 02.
Article in English | MEDLINE | ID: mdl-31765790

ABSTRACT

The rates of opioid use disorder during pregnancy have more than quadrupled in the last decade, resulting in numerous infants suffering exposure to opioids during the perinatal period, a critical period of central nervous system (CNS) development. Despite increasing use, the characterization and definition of the molecular and cellular mechanisms of the long-term neurodevelopmental impacts of opioid exposure commencing in utero remains incomplete. Thus, in consideration of the looming public health crisis stemming from the multitude of infants with prenatal opioid exposure entering school age, we undertook an investigation of the effects of perinatal methadone exposure in a novel preclinical model. Specifically, we examined the effects of opioids on the developing brain to elucidate mechanisms of putative neural cell injury, to identify diagnostic biomarkers and to guide clinical studies of outcome and follow-up. We hypothesized that methadone would induce a pronounced inflammatory profile in both dams and their pups, and be associated with immune system dysfunction, sustained CNS injury, and altered cognition and executive function into adulthood. This investigation was conducted using a combination of cellular, molecular, biochemical, and clinically translatable biomarker, imaging and cognitive assessment platforms. Data reveal that perinatal methadone exposure increases inflammatory cytokines in the neonatal peripheral circulation, and reprograms and primes the immune system through sustained peripheral immune hyperreactivity. In the brain, perinatal methadone exposure not only increases chemokines and cytokines throughout a crucial developmental period, but also alters microglia morphology consistent with activation, and upregulates TLR4 and MyD88 mRNA. This increase in neuroinflammation coincides with reduced myelin basic protein and altered neurofilament expression, as well as reduced structural coherence and significantly decreased fractional anisotropy on diffusion tensor imaging. In addition to this microstructural brain injury, adult rats exposed to methadone in the perinatal period have significant impairment in associative learning and executive control as assessed using touchscreen technology. Collectively, these data reveal a distinct systemic and neuroinflammatory signature associated with prenatal methadone exposure, suggestive of an altered CNS microenvironment, dysregulated developmental homeostasis, complex concurrent neural injury, and imaging and cognitive findings consistent with clinical literature. Further investigation is required to define appropriate therapies targeted at the neural injury and improve the long-term outcomes for this exceedingly vulnerable patient population.


Subject(s)
Analgesics, Opioid/adverse effects , Inflammation/chemically induced , Neuroimmunomodulation/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Animals , Diffusion Tensor Imaging , Disease Models, Animal , Female , Male , Pregnancy , Rats , Rats, Sprague-Dawley
15.
J Neurosurg Pediatr ; : 1-11, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31860810

ABSTRACT

OBJECTIVE: Brain injury remains a serious complication of prematurity. Almost half of infants with severe intraventricular hemorrhage (IVH) develop posthemorrhagic ventricular dilatation (PHVD) and 20% need surgery for posthemorrhagic hydrocephalus (PHH). This population is associated with an increased risk of later neurodevelopmental disability, but there is uncertainty about which radiological and examination features predict later disability. In this study the authors sought to devise and describe a novel combination of neurobehavioral examination and imaging for prediction of neurodevelopmental disability among preterm infants with PHVD and PHH. METHODS: The study patients were preterm infants (< 36 weeks gestation) with IVH and PHVD, with or without PHH. Ventricular index (VI), anterior horn width (AHW), thalamooccipital distance (TOD), ventricle/brain (V/B) ratio, and resistive indices (RIs) were recorded on the head ultrasound (HUS) just prior to surgery, or the HUS capturing the worst PHVD when surgery was not indicated. The posterior fossa was assessed with MRI. Neonatal ICU Network Neurobehavioral Scale (NNNS) examinations were performed at term age equivalent for each infant. A neurodevelopmental assessment using the Capute Scales (Capute Cognitive Adaptive Test [CAT] scores and Capute Clinical Linguistic Auditory Milestone Scale [CLAMS] scores) and a motor quotient (MQ) assessment were performed between 3 and 6 months of age corrected for degree of prematurity (corrected age). MQs < 50 reflect moderate to severe delays in early motor milestone attainment, CAT scores < 85 reflect delays in early visual and problem-solving abilities, and CLAMS scores < 85 reflect delays in early language. RESULTS: Twenty-one infants underwent assessments that included imaging and NNNS examinations, Capute Scales assessments, and MQs. NNNS nonoptimal reflexes (NOR) and hypertonicity subscores and AHW were associated with MQs < 50: NOR subscore OR 2.46 (95% CI 1.15-37.6, p = 0.034), hypertonicity subscore OR 1.68 (95% CI 1.04-3.78, p = 0.037), and AHW OR 1.13 (95% CI 1.01-1.39, p = 0.041). PVHI, cystic changes, and neurosurgical intervention were associated with CAT scores < 85: PVHI OR 9.2 (95% CI 1.2-73.2, p = 0.037); cystic changes OR 12.0 (95% CI 1.0-141.3, p = 0.048), and neurosurgical intervention OR 11.2 (95% CI 1.0-120.4, p = 0.046). Every 1-SD increase in the NOR subscore was associated with an increase in odds of a CAT score < 85, OR 4.0 (95% CI 1.0-15.0, p = 0.044). Worse NNNS NOR subscores were associated with early language delay: for a 1-SD increase in NOR subscore, there was an increase in the odds of a CLAMS score < 85, OR 19.5 (95% CI 1.3-303, p = 0.034). CONCLUSIONS: In former preterm children with severe IVH and PHVD, neonatal neurological examination findings and imaging features are associated with delays at 3-6 months in motor milestones, visual and problem-solving abilities, and language.

17.
Dev Neurosci ; : 1-11, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31167188

ABSTRACT

Early studies following perinatal hypoxic-ischemic encephalopathy (HIE) suggested expressive language deficits and academic difficulties, but there is only limited detailed study of language development in this population since the widespread adoption of therapeutic hypothermia (TH). Expressive and receptive language testing was performed as part of a larger battery with 45 children with a mean age of 26 months following perinatal HIE treated with TH. Overall cohort outcomes as well as the effects of gender, estimated household income, initial pH and base excess, and pattern of injury on neonatal brain MRI were assessed. The cohort overall demonstrated expressive language subscore, visual-reception subscore, and early learning composite scores significantly below test norms, with relative sparing of receptive language subscores. Poorer expressive language manifested as decreased vocabulary size and shorter utterances. Expressive language subscores showed a significant gender effect, and estimated socioeconomic status showed a significant effect on both receptive and expressive language subscores. Initial blood gas markers and modified Sarnat scoring did not show a significant effect on language subscores. Binarized MRI abnormality predicted a significant effect on both receptive and expressive language subscores; the presence of specific cortical/subcortical abnormalities predicted receptive language deficits. Overall, the language development profile of children following HIE in the era of hypothermia shows a relative strength in receptive language. Gender and socioeconomic status predominantly predict expressive language deficits; abnormalities detectable on MRI predominantly predict receptive language deficits.

18.
J Child Neurol ; 34(10): 556-566, 2019 09.
Article in English | MEDLINE | ID: mdl-31070085

ABSTRACT

AIM: Hypoxic-ischemic encephalopathy is associated with damage to deep gray matter; however, white matter involvement has become recognized. This study explored differences between patients and clinical controls on diffusion tensor imaging, and relationships between diffusion tensor imaging and neurodevelopmental outcomes. METHOD: Diffusion tensor imaging was obtained for 31 neonates after hypoxic-ischemic encephalopathy treated with therapeutic hypothermia and 10 clinical controls. A subgroup of patients with hypoxic-ischemic encephalopathy (n = 14) had neurodevelopmental outcomes correlated with diffusion tensor imaging scalars. RESULTS: Group differences in diffusion tensor imaging scalars were observed in the putamen, anterior and posterior centrum semiovale, and the splenium of the corpus callosum. Differences in these regions of interest were correlated with neurodevelopmental outcomes between ages 20 and 32 months. CONCLUSION: Therapeutic hypothermia may not be a complete intervention for hypoxic-ischemic encephalopathy, as neonatal white matter changes may continue to be evident, but further research is warranted. Patterns of white matter change on neonatal diffusion tensor imaging correlated with neurodevelopmental outcomes in this exploratory pilot study.


Subject(s)
Asphyxia Neonatorum/therapy , Diffusion Tensor Imaging , Hypothermia, Induced , Hypoxia-Ischemia, Brain/therapy , White Matter/diagnostic imaging , White Matter/injuries , Asphyxia Neonatorum/complications , Asphyxia Neonatorum/diagnostic imaging , Asphyxia Neonatorum/psychology , Female , Humans , Hypoxia-Ischemia, Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/etiology , Hypoxia-Ischemia, Brain/psychology , Infant, Newborn , Learning , Male , Motor Skills , Pilot Projects , Prospective Studies , Treatment Outcome , White Matter/growth & development
19.
Pediatr Neurol Briefs ; 30(12): 47, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27956815

ABSTRACT

Investigators from multiple Italian pediatric neurology and neurogenetics departments studied cognitive functions, behavior, and adaptive functioning in large cohort of 54 patients with Joubert syndrome (JS) as part of a prospective, multi-center study.

20.
BMC Neurol ; 15: 209, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26486728

ABSTRACT

BACKGROUND: Neurodevelopmental disabilities persist in survivors of neonatal hypoxic-ischemic encephalopathy (HIE) despite treatment with therapeutic hypothermia. Cerebrovascular autoregulation, the mechanism that maintains cerebral perfusion during changes in blood pressure, may influence outcomes. Our objective was to describe the relationship between acute autoregulatory vasoreactivity during treatment and neurodevelopmental outcomes at 2 years of age. METHODS: In a pilot study of 28 neonates with HIE, we measured cerebral autoregulatory vasoreactivity with the hemoglobin volume index (HVx) during therapeutic hypothermia, rewarming, and the first 6 h of normothermia. The HVx, which is derived from near-infrared spectroscopy, was used to identify the individual optimal mean arterial blood pressure (MAPOPT) at which autoregulatory vasoreactivity is greatest. Cognitive and motor neurodevelopmental evaluations were completed in 19 children at 21-32 months of age. MAPOPT, blood pressure in relation to MAPOPT, blood pressure below gestational age + 5 (ga + 5), and regional cerebral oximetry (rSO2) were compared to the neurodevelopmental outcomes. RESULTS: Nineteen children who had HIE and were treated with therapeutic hypothermia performed in the average range on cognitive and motor evaluations at 21-32 months of age, although the mean performance was lower than that of published normative samples. Children with impairments at the 2-year evaluation had higher MAPOPT values, spent more time with blood pressure below MAPOPT, and had greater blood pressure deviation below MAPOPT during rewarming in the neonatal period than those without impairments. Greater blood pressure deviation above MAPOPT during rewarming was associated with less disability and higher cognitive scores. No association was observed between rSO2 or blood pressure below ga + 5 and neurodevelopmental outcomes. CONCLUSION: In this pilot cohort, motor and cognitive impairments at 21-32 months of age were associated with greater blood pressure deviation below MAPOPT during rewarming following therapeutic hypothermia, but not with rSO2 or blood pressure below ga + 5. This suggests that identifying individual neonates' MAPOPT is superior to using hemodynamic goals based on gestational age or rSO2 in the acute management of neonatal HIE.


Subject(s)
Cerebrovascular Circulation/physiology , Child Development/physiology , Cognition/physiology , Homeostasis/physiology , Hypothermia, Induced/methods , Hypoxia-Ischemia, Brain/therapy , Motor Skills/physiology , Arterial Pressure , Blood Pressure , Child, Preschool , Cohort Studies , Female , Hemodynamics , Hemoglobins , Humans , Hypoxia-Ischemia, Brain/physiopathology , Infant , Infant, Newborn , Longitudinal Studies , Male , Oximetry , Perfusion , Pilot Projects , Prospective Studies , Spectroscopy, Near-Infrared , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...