Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Appl Biochem ; 71(1): 223-231, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37964505

ABSTRACT

The secondary sulfonamide derivatives containing benzothiazole scaffold (1-10) were synthesized to determine their inhibition properties on two physiologically essential human carbonic anhydrases isoforms (hCAs, EC, 4.2.1.1), hCA I, and hCA II. The inhibitory effects of the compounds on hCA I and hCA II isoenzymes were investigated by comparing their IC50 and Ki values. The Ki values of compounds (1-10) against hCA I and hCA II are in the range of 0.052 ± 0.022-0.971 ± 0.280 and 0.025 ± 0.010-0.682 ± 0.335, respectively. Some of these inhibited the enzyme more effectively than the standard drug, acetazolamide. In particular, compounds 5 and 4 were found to be most effective on hCA I and hCA II.


Subject(s)
Carbonic Anhydrase I , Carbonic Anhydrase Inhibitors , Humans , Carbonic Anhydrase I/metabolism , Structure-Activity Relationship , Carbonic Anhydrase Inhibitors/pharmacology , Sulfonamides/pharmacology , Benzothiazoles , Sulfanilamide , Molecular Structure
2.
Biotechnol Appl Biochem ; 71(1): 202-212, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37904288

ABSTRACT

In this study, benzohydroxamic acid molecules were synthesized from methyl 4-amino-2-methoxy, methyl 4-amino-3-nitro, methyl 4-amino-3-methyl, and methyl 4-amino-3-chloro benzoate molecules, and the horseradish peroxidase (HRP) enzyme was purified in one step using the affinity chromatography technique for the first time. The IC50 and Ki values for the 4-amino 3-methyl benzohydroxamic acid molecule were 0.136 and 0.132 ± 0.054 µM, respectively, while the IC50 and Ki values for the 4-amino-3-nitro benzohydroxamic acid molecule were 56.00 and 51.90 ± 9.90 µM, respectively. It was found that the IC50 and Ki values for the 4-amino-3-chloro benzohydroxamic acid molecule were 218.33 and 175.67 ± 43.78 µM, respectively, whereas the IC50 and Ki values for the 4-amino-2-methoxy benzohydroxamic acid molecule were 306.00 and 218.00 ± 68.80 µM, respectively. The HRP enzyme was synthesized from 4-amino-2-methoxy hydroxamic acid column with a 35.97% yield 601.13 times, 4-amino-3-nitro hydroxamic acid column, with a 14.00% yield 404.11 times, 4-amino-3-methyl hydroxamic acid column with an 8.70% yield 394.88 times, and 4-amino-3-chloro hydroxamic acid column with a 4.48% yield 284.85 times. Thus, the HRP enzyme was purified in a single step with hydroxamic acids, and its molecular weight was found to be 44 kDa. The optimum pH was 8.0, the optimum temperature was 15°C, and the optimum ionic strength was 0.4 M for the purified HRP enzyme.


Subject(s)
Hydroxamic Acids , Horseradish Peroxidase/chemistry , Chromatography, Affinity , Molecular Weight
3.
Chem Biodivers ; 20(8): e202300687, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37427460

ABSTRACT

Lactoperoxidase enzyme (LPO) is secreted from salivary, mammary, and other mucosal glands including the bronchi, lungs, and nose, which had functions as a natural and the first line of defense towards viruses and bacteria. In this study, methyl benzoates were examined in LPO enzyme activity. Methyl benzoates are used as precursors in the synthesis of aminobenzohydrazides used as LPO inhibitors. For this purpose, LPO was purified in a single step using sepharose-4B-l-tyrosine-sulfanilamide affinity gel chromatography with a yield of 9.91 % from cow milk. Also, some inhibition parameters including the half maximal inhibitory concentration (IC50 ) value and an inhibition constant (Ki ) values of methyl benzoates were determined. These compounds inhibited LPO with Ki values ranging from 0.033±0.004 to 1540.011±460.020 µM. Compound 1 a (methyl 2-amino-3-bromobenzoate) showed the best inhibition (Ki =0.033±0.004 µM). The most potent inhibitor (1 a) showed with a docking score of -3.36 kcal/mol and an MM-GBSA value of -25.05 kcal/mol, of these methyl benzoate derivatives (1 a-16 a) series are established H-bond within the binding cavity with residues Asp108 (distance of 1.79 Å), Ala114 (distance of 2.64 Å), and His351 (distance of 2.12 Å).


Subject(s)
Lactoperoxidase , Milk , Female , Animals , Cattle , Molecular Docking Simulation , Lactoperoxidase/metabolism , Milk/chemistry , Milk/metabolism , Benzoates/pharmacology , Benzoates/analysis
4.
Bioprocess Biosyst Eng ; 46(4): 523-534, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36527454

ABSTRACT

Horseradish peroxidase (HRP) is an oxidoreductase enzyme and oxidizes various inorganic and organic compounds. It has wide application areas such as immunological tests, probe-based test techniques, removal of phenolic pollutants from wastewater and organic synthesis. HRP is found in the root of the horseradish plant as a mixture of different isoenzymes, and it is very difficult to separate these enzymes from each other. In this regard, recombinant production is a very advantageous method in terms of producing the desired isoenzyme. This study was performed to produce HRP A2A isoenzyme extracellularly in Pichia pastoris and to purify this enzyme in a single step using a 3-amino-4-chloro benzohydrazide affinity column. First, codon-optimized HRP A2A gene was amplified and inserted into pPICZαC. So, obtained pPICZαC-HRPA2A was cloned in E. coli cells. Then, P. pastoris X-33 cells were transformed with linearized recombinant DNA and a yeast clone was cultivated for extracellular recombinant HRP A2A (rHRP A2A) enzyme production. Then, the purification of this enzyme was performed in a single step by affinity chromatography. The molecular mass of purified rHRP A2A enzyme was found to be about 40 kDa. According to characterization studies of the purified enzyme, the optimum pH and ionic strength for the rHRP A2A isoenzyme were determined to be 6.0 and 0.04 M, respectively, and o-dianisidine had the highest specificity with the lowest Km and Vmax values. Thus, this is an economical procedure to purify HRP A2A isoenzyme without time-consuming and laborious isolation from an isoenzyme mixture.


Subject(s)
Escherichia coli , Isoenzymes , Recombinant Proteins/genetics , Isoenzymes/genetics , Horseradish Peroxidase/chemistry , Pichia/genetics
5.
J Biomol Struct Dyn ; 40(1): 401-410, 2022 01.
Article in English | MEDLINE | ID: mdl-32856529

ABSTRACT

Antibiotics are generally used for human and veterinary applications to preserve and to control microbial diseases. Milk has a biologically significant enzyme known as lactoperoxidase (LPO) that is a member of peroxidase family. In metabolism, LPO has ability to catalyze the transformation of thiocyanate (SCN-) to hypothiocyanite (OSCN-) that is an antibacterial agent and the reaction occurs with hydrogen peroxide. In this work, LPO inhibition effects of some antibiotics including cefazolin, oxytetracycline, flunixin meglumine, cefuroxime, tylosin, vancomycin, chloramphenicol and lincomycin were tested. Among the antibiotics cefazolin was indicated the strongest inhibitory efficacy. The half maximal inhibitory concentration (IC50) and the inhibition constant (Ki) values of cefazolin were found as 8.19 and 34.66 µM, respectively. It was shown competitive inhibition. 5-Methyl-1,3,4-thiadiazol-2-yl moiety activity plays a key role in the inhibition mechanism of cefazolin.Communicated by Ramaswamy H. Sarma.


Subject(s)
Lactoperoxidase , Milk , Animals , Anti-Bacterial Agents/pharmacology , Humans , Hydrogen Peroxide , Molecular Docking Simulation , Peroxidases
6.
Biotechnol Appl Biochem ; 68(1): 102-113, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32060967

ABSTRACT

We have developed efficient procedure for isolation of horseradish peroxidase (HRP) using aminobenzohydrazide-based affinity chromatography. Sepharose 4B-bounded aminobenzohydrazides are suitable for long-term use and large-scale purification. In this study, 26 aminobenzohydrazide derivatives were synthesized, characterized and defined as new HRP inhibitors. In addition, detailed inhibition effects of these molecules on HRP enzyme were investigated. Affinity matrix was formed by bonding aminobenzohydrazides, which exhibited inhibitory activity to sepharose-4B-l-tyrosine. HRP was isolated from crude homogenate in single step and purification factors were recorded as 1,151-fold (recovery of 8.5%) with 4-amino 3-bromo benzohydrazide and as 166.16-fold (recovery of 16.67 %) with 3-amino 4-chloro benzohydrazide.


Subject(s)
Chromatography, Affinity , Plant Proteins/isolation & purification , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/isolation & purification , Plant Proteins/chemistry
7.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1114-1115: 86-92, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30939412

ABSTRACT

In this study, an effective single step affinity method is presented for purifying plant peroxidase (POD) enzymes from radish species. This method make possible to purify the enzymes in high yield and purity. Briefly, 10 different 4-amino benzohydrazide derivatives were synthesized and identified as new competitive POD inhibitors. Then, these derivatives were coupled to Sepharose 4B-L-Tyrosine support matrix by diazotization to form the affinity gels. Purification factors were recorded as 54.8% yield - 665-fold, 33.8% yield - 613-fold, 22.7% yield - 595-fold, 34.4% yield - 781-fold, 40.9% yield - 282-fold for turnip (T-POD), black radish (BR-POD), daikon (D-POD), sweet radish (SR-POD) and kohlrabi radish, (KR-POD), respectively. It has also been shown that the affinity gels, which prepared using the 4-amino 3-bromo benzohydrazide and 4-amino 2-nitro benzohydrazide molecules, capable to purify all radish species POD enzymes in high purity and yield.


Subject(s)
Chromatography, Affinity/methods , Peroxidase/isolation & purification , Plant Proteins/isolation & purification , Raphanus/enzymology , Electrophoresis, Polyacrylamide Gel , Peroxidase/antagonists & inhibitors , Peroxidase/chemistry , Plant Extracts/chemistry , Plant Proteins/antagonists & inhibitors , Plant Proteins/chemistry , Raphanus/chemistry
8.
J Biochem Mol Toxicol ; 31(9)2017 Sep.
Article in English | MEDLINE | ID: mdl-28594102

ABSTRACT

In this study, inhibition profiles of some natural products, which are digoxin, L-Dopa, dopamine, isoliquiritigenin, and 1,1,2,2-tetrakis(p-hydroxyphenyl)ethane (Tetrakis), were investigated against bovine lactoperoxidase (LPO) enzyme. Digoxin, L-Dopa, and dopamine are active ingredients of some drugs, which have important functions in our body, especially in cases of heart failure. Isoliquiritigenin and tetrakis are types of natural phenolic compounds, which play an important role in cancer prevention and treatment. LPO enzyme was purified from bovine milk using sepharose-4B-l-tyrosine sulfonamide affinity column chromatography. LPO is responsible for the nonimmune biological defense system and has antibacterial activity so selection of these active substances is important. The inhibition studies are performed with the ABTS substrate. Bovine LPO enzyme was effectively inhibited by phenolic molecules. Ki values of these natural products were found as 0.20 ± 0.09, 0.22 ± 0.17, 0.49 ± 0.11, 0.49 ± 0.27, and 1.20 ± 0.25 µM, respectively. Tetrakis and digoxin exhibited noncompetitive inhibition, and other molecules showed competitive inhibition.


Subject(s)
Chalcones/chemistry , Digoxin/chemistry , Dopamine/chemistry , Enzyme Inhibitors/chemistry , Lactoperoxidase , Levodopa/chemistry , Milk/enzymology , Animals , Cattle , Lactoperoxidase/antagonists & inhibitors , Lactoperoxidase/chemistry , Lactoperoxidase/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...