Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 121(17): 4379-4387, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28422504

ABSTRACT

We address the interpretation, via an integrated computational approach, of the experimental continuous-wave electron paramagnetic resonance (cw-EPR) spectra of a complete set of conformationally highly restricted, stable 310-helical peptides from hexa- to nonamers, each bis-labeled with nitroxide radical-containing TOAC (4-amino-1-oxyl-2,2,6,6-tetramethylpiperidine-4-carboxylic acid) residues. The usefulness of TOAC for this type of analysis has been shown already to be due to its cyclic piperidine side chain, which is rigidly connected to the peptide backbone α-carbon. The TOAC α-amino acids are separated by two, three, four, and five intervening residues. This set of compounds has allowed us to modulate both the radical···radical distance and the relative orientation parameters. To further validate our conclusion, a comparative analysis has been carried out on three singly TOAC-labeled peptides of similar main-chain length.


Subject(s)
Cyclic N-Oxides/chemistry , Nitrogen Oxides/chemistry , Peptides/chemistry , Quantum Theory , Electron Spin Resonance Spectroscopy , Spin Labels
2.
J Chem Theory Comput ; 13(1): 309-319, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28068775

ABSTRACT

In this article, we present a clustering method of atoms in proteins based on the analysis of the correlation times of interatomic distance correlation functions computed from MD simulations. The goal is to provide a coarse-grained description of the protein in terms of fewer elements that can be treated as dynamically independent subunits. Importantly, this domain decomposition method does not take into account structural properties of the protein. Instead, the clustering of protein residues in terms of networks of dynamically correlated domains is defined on the basis of the effective correlation times of the pair distance correlation functions. For these properties, our method stands as a complementary analysis to the customary protein decomposition in terms of quasi-rigid, structure-based domains. Results obtained for a prototypal protein structure illustrate the approach proposed.


Subject(s)
Molecular Dynamics Simulation , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...