Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 664218, 2021.
Article in English | MEDLINE | ID: mdl-34867937

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) play a key role in the initiation and orchestration of early type 2 immune responses. Upon tissue damage, ILC2s are activated by alarmins such as IL-33 and rapidly secrete large amounts of type 2 signature cytokines. ILC2 activation is governed by a network of transcriptional regulators including nuclear factor (NF)-κB family transcription factors. While it is known that activating IL-33 receptor signaling results in downstream NF-κB activation, the underlying molecular mechanisms remain elusive. Here, we found that the NF-κB subunit c-Rel is required to mount effective innate pulmonary type 2 immune responses. IL-33-mediated activation of ILC2s in vitro as well as in vivo was found to induce c-Rel mRNA and protein expression. In addition, we demonstrate that IL-33-mediated activation of ILC2s leads to nuclear translocation of c-Rel in pulmonary ILC2s. Although c-Rel was found to be a critical mediator of innate pulmonary type 2 immune responses, ILC2-intrinsic deficiency of c-Rel did not have an impact on the developmental capacity of ILC2s nor affected homeostatic numbers of lung-resident ILC2s at steady state. Moreover, we demonstrate that ILC2-intrinsic deficiency of c-Rel alters the capacity of ILC2s to upregulate the expression of ICOSL and OX40L, key stimulatory receptors, and the expression of type 2 signature cytokines IL-5, IL-9, IL-13, and granulocyte-macrophage colony-stimulating factor (GM-CSF). Collectively, our data using Rel-/- mice suggest that c-Rel promotes acute ILC2-driven allergic airway inflammation and suggest that c-Rel may contribute to the pathophysiology of ILC2-mediated allergic airway disease. It thereby represents a promising target for the treatment of allergic asthma, and evaluating the effect of established c-Rel inhibitors in this context would be of great clinical interest.


Subject(s)
Immunity, Innate , Lung/immunology , Lymphocyte Subsets/immunology , Proto-Oncogene Proteins c-rel/immunology , Animals , Asthma/immunology , Asthma/pathology , Disease Models, Animal , Female , Gene Expression , In Vitro Techniques , Interleukin-33/immunology , Lung/pathology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Proto-Oncogene Proteins c-rel/deficiency , Proto-Oncogene Proteins c-rel/genetics
2.
Nat Commun ; 8(1): 748, 2017 09 29.
Article in English | MEDLINE | ID: mdl-28963474

ABSTRACT

Neovascular retinopathies are major causes of vision loss; yet treatments to prevent the condition are inadequate. The role of regulatory T cells in neovascular retinopathy is unknown. Here we show that in retinopathy regulatory T cells are transiently increased in lymphoid organs and the retina, but decline when neovascularization is established. The decline is prevented following regulatory T cells expansion with an IL-2/anti-IL-2 mAb complex or the adoptive transfer of regulatory T cells. Further, both approaches reduce vasculopathy (vaso-obliteration, neovascularization, vascular leakage) and alter the activation of Tmem119+ retinal microglia. Our in vitro studies complement these findings, showing that retinal microglia co-cultured with regulatory T cells exhibit a reduction in co-stimulatory molecules and pro-inflammatory mediators that is attenuated by CTLA-4 blockade. Collectively, we demonstrate that regulatory T cells are recruited to the retina and, when expanded in number, repair the vasculature. Manipulation of regulatory T cell numbers is a previously unrecognized, and promising avenue for therapies to prevent blinding neovascular retinopathies.The local immune responses in the eye are attenuated to preserve sight. Surprisingly, Deliyanti et al. show that regulatory T cells (Tregs) take an active role in protecting the eye from neovascularization in oxygen-induced retinopathy, and that interventions that augment the retinal Treg numbers reduce neovascular retinopathy in mice.


Subject(s)
Microglia/immunology , Retina/immunology , Retinal Neovascularization/immunology , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , CTLA-4 Antigen/antagonists & inhibitors , Coculture Techniques , Forkhead Transcription Factors/metabolism , Interleukin-2 , Membrane Proteins/metabolism , Mice , Microglia/metabolism , Retinal Vessels , T-Lymphocytes, Regulatory/metabolism , Vascular Diseases
3.
PLoS One ; 10(4): e0122919, 2015.
Article in English | MEDLINE | ID: mdl-25853889

ABSTRACT

MYB transcriptional elongation is regulated by an attenuator sequence within intron 1 that has been proposed to encode a RNA stem loop (SLR) followed by a polyU tract. We report that NFκBp50 can bind the SLR polyU RNA and promote MYB transcriptional elongation together with NFκBp65. We identified a conserved lysine-rich motif within the Rel homology domain (RHD) of NFκBp50, mutation of which abrogated the interaction of NFκBp50 with the SLR polyU and impaired NFκBp50 mediated MYB elongation. We observed that the TAR RNA-binding region of Tat is homologous to the NFκBp50 RHD lysine-rich motif, a finding consistent with HIV Tat acting as an effector of MYB transcriptional elongation in an SLR dependent manner. Furthermore, we identify the DNA binding activity of NFκBp50 as a key component required for the SLR polyU mediated regulation of MYB. Collectively these results suggest that the MYB SLR polyU provides a platform for proteins to regulate MYB and reveals novel nucleic acid binding properties of NFκBp50 required for MYB regulation.


Subject(s)
DNA-Binding Proteins/genetics , Genes, myb/genetics , HIV-1/genetics , NF-kappa B p50 Subunit/genetics , DNA-Binding Proteins/metabolism , HIV-1/pathogenicity , Humans , Introns/genetics , Inverted Repeat Sequences/genetics , Mutation , NF-kappa B p50 Subunit/metabolism , RNA, Viral/genetics
4.
Proc Natl Acad Sci U S A ; 99(17): 11299-304, 2002 Aug 20.
Article in English | MEDLINE | ID: mdl-12149518

ABSTRACT

There is a great difference in susceptibility to v-abl transgene-induced plasmacytoma between the BALB/cAn and the relatively resistant C57BL/6J mouse strains. We have used the Mapmaker/SURVIVOR algorithm to analyze genome-wide scans on over 800 transgenic F2 hybrid mice, and have mapped at least six loci on chromosomes 2, 4, 11, 17, and 18 that modify tumor-related morbidity. As in human multiple myeloma, males were found to be more prone to plasmacytomagenesis. Different loci influence tumor susceptibility in male and female mice. Survival in females may be largely controlled by a pair of interacting loci on chromosomes 2 and 17.


Subject(s)
Gene Expression Regulation, Neoplastic/physiology , Genes, abl , Genetic Predisposition to Disease , Plasmacytoma/genetics , Algorithms , Animals , Crosses, Genetic , Disease Models, Animal , Female , Genetic Linkage , Genotype , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Transgenic , Morbidity , Plasmacytoma/epidemiology , Plasmacytoma/mortality , Survival Analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...