Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Psychol Sci ; 34(1): 8-21, 2023 01.
Article in English | MEDLINE | ID: mdl-36282938

ABSTRACT

A long-standing debate concerns whether developmental dyscalculia is characterized by core deficits in processing nonsymbolic or symbolic numerical information as well as the role of domain-general difficulties. Heterogeneity in recruitment and diagnostic criteria make it difficult to disentangle this issue. Here, we selected children (n = 58) with severely compromised mathematical skills (2 SD below average) but average domain-general skills from a large sample referred for clinical assessment of learning disabilities. From the same sample, we selected a control group of children (n = 42) matched for IQ, age, and visuospatial memory but with average mathematical skills. Children with dyscalculia showed deficits in both symbolic and nonsymbolic number sense assessed with simple computerized tasks. Performance in the digit-comparison task and the numerosity match-to-sample task reliably separated children with developmental dyscalculia from controls in cross-validated logistic regression (area under the curve = .84). These results support a number-sense-deficit theory and highlight basic numerical abilities that could be targeted for early identification of at-risk children as well as for intervention.


Subject(s)
Dyscalculia , Child , Humans , Dyscalculia/diagnosis , Cognition , Mathematics
2.
Acta Psychol (Amst) ; 171: 118-127, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27794217

ABSTRACT

The literature on intervention programs to improve arithmetical abilities is fragmentary and few studies have examined training on the symbolic representation of numbers (i.e. Arabic digits). In the present research, three groups of 3rd- and 5th-grade schoolchildren were given training on mental additions: 76 were assigned to a computer-based strategic training (ST) group, 73 to a process-based training (PBT) group, and 71 to a passive control (PC) group. Before and after the training, the children were given a criterion task involving complex addition problems, a nearest transfer task on complex subtraction problems, two near transfer tasks on math fluency, and a far transfer task on numerical reasoning. Our results showed developmental differences: 3rd-graders benefited more from the ST, with transfer effects on subtraction problems and math fluency, while 5th-graders benefited more from the PBT, improving their response times in the criterion task. Developmental, clinical and educational implications of these findings are discussed.


Subject(s)
Computers , Learning/physiology , Mathematics , Aging/psychology , Child , Female , Humans , Male , Mental Processes/physiology , Reaction Time , Transfer, Psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...