Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Space Sci Rev ; 219(8): 80, 2023.
Article in English | MEDLINE | ID: mdl-38037569

ABSTRACT

The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on both the Van Allen Probes spacecraft is a time-of-flight versus total energy instrument that provided ion composition data over the ring current energy (∼7 keV to ∼1 MeV), and electrons over the energy range ∼25 keV to ∼1 MeV throughout the duration of the mission (2012 - 2019). In this paper we present instrument calibrations, implemented after the Van Allen Probes mission was launched. In particular, we discuss updated rate dependent corrections, possible contamination by "accidentals" rates, and caveats concerning the use of certain products. We also provide a summary of the major advances in ring current science, obtained from RBSPICE observations, and their implications for the future of inner magnetosphere exploration.

2.
Space Sci Rev ; 218(8): 66, 2022.
Article in English | MEDLINE | ID: mdl-36407497

ABSTRACT

The Van Allen Probes mission operations materialized through a distributed model in which operational responsibility was divided between the Mission Operations Center (MOC) and separate instrument specific SOCs. The sole MOC handled all aspects of telemetering and receiving tasks as well as certain scientifically relevant ancillary tasks. Each instrument science team developed individual instrument specific SOCs proficient in unique capabilities in support of science data acquisition, data processing, instrument performance, and tools for the instrument team scientists. In parallel activities, project scientists took on the task of providing a significant modeling tool base usable by the instrument science teams and the larger scientific community. With a mission as complex as Van Allen Probes, scientific inquiry occurred due to constant and significant collaboration between the SOCs and in concert with the project science team. Planned cross-instrument coordinated observations resulted in critical discoveries during the seven-year mission. Instrument cross-calibration activities elucidated a more seamless set of data products. Specific topics include post-launch changes and enhancements to the SOCs, discussion of coordination activities between the SOCs, SOC specific analysis software, modeling software provided by the Van Allen Probes project, and a section on lessons learned. One of the most significant lessons learned was the importance of the original decision to implement individual team SOCs providing timely and well-documented instrument data for the NASA Van Allen Probes Mission scientists and the larger magnetospheric and radiation belt scientific community.

3.
J Geophys Res Space Phys ; 119(11): 8813-8819, 2014 Nov.
Article in English | MEDLINE | ID: mdl-26167435

ABSTRACT

H-ion (∼45 keV to ∼600 keV), He-ion (∼65 keV to ∼520 keV), and O-ion (∼140 keV to ∼1130 keV) integral flux measurements, from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft B, are reported. These abundance data form a cohesive picture of ring current ions during the first 9 months of measurements. Furthermore, the data presented herein are used to show injection characteristics via the He-ion/H-ion abundance ratio and the O-ion/H-ion abundance ratio. Of unique interest to ring current dynamics are the spatial-temporal decay characteristics of the two injected populations. We observe that He-ions decay more quickly at lower L shells, on the order of ∼0.8 day at L shells of 3-4, and decay more slowly with higher L shell, on the order of ∼1.7 days at L shells of 5-6. Conversely, O-ions decay very rapidly (∼1.5 h) across all L shells. The He-ion decay time are consistent with previously measured and calculated lifetimes associated with charge exchange. The O-ion decay time is much faster than predicted and is attributed to the inclusion of higher-energy (> 500 keV) O-ions in our decay rate estimation. We note that these measurements demonstrate a compelling need for calculation of high-energy O-ion loss rates, which have not been adequately studied in the literature to date. KEY POINTS: We report initial observations of ring current ionsWe show that He-ion decay rates are consistent with theoryWe show that O-ions with energies greater than 500 keV decay very rapidly.

4.
Braz. arch. biol. technol ; 53(5): 1225-1234, Sept.-Oct. 2010. ilus, tab
Article in English | LILACS | ID: lil-564101

ABSTRACT

The aim of this work was the study a trickling biofilter, where water was circulated throughout the bed. In the first steady state experiment, the packing materials used were 25mm Pall rings. The airflow rate was increased gradually and the concentration of styrene in the air stream was held constant. In the second experiment, 15mm Pall rings were used. In this case, the feed contained both styrene and a small amount of acetone. The concentration of acetone and the air flow rate were kept constant, but the styrene inlet concentration was increased. The concentrations were measured at the input, and also at an intermediate and the outlet position in the biotrickling filter to determine the concentration profile along the reactor. Using the values of coefficient of determination (R²) and the coefficient of variation of the fitted constant as criteria, a zero order model with diffusional limitation was chosen as the best representation of the data. Then a further, third, set of experiments were done at unsteady state, using step changes of the inlet concentration levels of both styrene and acetone at a steady air flow-rate . Inlet and outlet concentrations were measured as a function of time and the results were adequately described using a simple first order model.

5.
Braz. arch. biol. technol ; 50(5): 871-877, Sept. 2007. graf
Article in English | LILACS | ID: lil-468168

ABSTRACT

The objective of this work was to evaluate toluene degradation in a trickle bed reactor when the loading was carried out by changing the air flow rate. The biofiltration system was inoculated with a mixed microbial population, adapted to degradation of hydrophobic compounds. Polypropylene high flow rings were used as a packing material. The system was operated for a period of 50 days at empty bed residence times ranging from 106s to 13s and with a constant inlet concentration of toluene of 100 mg.m-3. The reactor showed high removal efficiency at higher contact times and increasing elimination capacity with higher air-flow rates. The highest EC value reached was 9.8 gC.m-3.h-1 at EBRT = 13s. During the experiment, the consumption of NaOH solution was also measured. No significant variation of this value was found and an average value of 3.84 mmol of NaOH per gram of consumed carbon was recorded.

6.
Braz. arch. biol. technol ; 49(4): 669-676, July 2006. ilus, graf
Article in English | LILACS | ID: lil-448935

ABSTRACT

This paper proposes the use of a preliminary, phenol removal step to reduce peak loads arriving at a conventional effluent plant. A packed bed reactor (PBR) using polyurethane foam, porous glass and also cocoa fibres as the inert support material was used. Experiments have been carried out where the flow-rates, plus inlet and outlet phenol concentrations were measured. A simple, plug-flow model is proposed to represent the results. Zero, first order, Monod and inhibited kinetics rate equations were evaluated. It was found that the Monod model gave the best fit to the experimental data and allowed linear graphs to be plotted. The Monod saturation constant, K, is approximately 50 g m-3, and ka is around 900 s-1.


Este artigo propõe o uso de uma etapa preliminar de remoção de fenol para redução de picos de carga na entrada de sistemas convencionais de tratamento de efluentes. Um reator de leito fixo (RLF) foi usado, tendo como suportes inertes espuma de poliuretano, vidro poroso e também fibras de coco. Nos experimentos foram controladas a vazão e as concentrações de fenol de entrada e saída. Um simples modelo plug-flow é proposto para representar os resultados. Cinéticas de zero e primeira ordens, Monod e de inibição foram avaliadas. Foi verificado que o modelo de Monod foi o que melhor se ajustou aos dados experimentais, permitindo que gráficos lineares fossem traçados. A constante saturação de Monod, K, é de aproximadamente 50 g m-3 e ka em torno de 900 s-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...