Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
BMC Genomics ; 17: 649, 2016 08 17.
Article in English | MEDLINE | ID: mdl-27535741

ABSTRACT

BACKGROUND: MicroRNAs (miRNA) are varied in length, under 25 nucleotides, single-stranded noncoding RNA that regulate post-transcriptional gene expression via translational repression or mRNA degradation. Elevated levels of miRNAs can be detected in systemic circulation after tissue injury, suggesting that miRNAs are released following cellular damage. Because of their remarkable stability, ease of detection in biofluids, and tissue specific expression patterns, miRNAs have the potential to be specific biomarkers of organ injury. The identification of miRNA biomarkers requires a systematic approach: 1) determine the miRNA tissue expression profiles within a mammalian species via next generation sequencing; 2) identify enriched and/or specific miRNA expression within organs of toxicologic interest, and 3) in vivo validation with tissue-specific toxicants. While miRNA tissue expression has been reported in rodents and humans, little data exists on miRNA tissue expression in the dog, a relevant toxicology species. The generation and evaluation of the first dog miRNA tissue atlas is described here. RESULTS: Analysis of 16 tissues from five male beagle dogs identified 106 tissue enriched miRNAs, 60 of which were highly enriched in a single organ, and thus may serve as biomarkers of organ injury. A proof of concept study in dogs dosed with hepatotoxicants evaluated a qPCR panel of 15 tissue enriched miRNAs specific to liver, heart, skeletal muscle, pancreas, testes, and brain. Dogs with elevated serum levels of miR-122 and miR-885 had a correlative increase of alanine aminotransferase, and microscopic analysis confirmed liver damage. Other non-liver enriched miRNAs included in the screening panel were unaffected. Eli Lilly authors created a complimentary Sprague Dawely rat miRNA tissue atlas and demonstrated increased pancreas enriched miRNA levels in circulation, following caerulein administration in rat and dog. CONCLUSION: The dog miRNA tissue atlas provides a resource for biomarker discovery and can be further mined with refinement of dog genome annotation. The 60 highly enriched tissue miRNAs identified within the dog miRNA tissue atlas could serve as diagnostic biomarkers and will require further validation by in vivo correlation to histopathology. Once validated, these tissue enriched miRNAs could be combined into a powerful qPCR screening panel to identify organ toxicity during early drug development.


Subject(s)
Gene Expression Profiling , MicroRNAs/genetics , Transcriptome , Animals , Biomarkers , Cluster Analysis , Computational Biology/methods , Dogs , Female , Gene Expression Regulation/drug effects , High-Throughput Nucleotide Sequencing , Male , Molecular Sequence Annotation , Organ Specificity/genetics
2.
RNA ; 21(2): 164-71, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25519487

ABSTRACT

Small RNA sequencing can be used to gain an unprecedented amount of detail into the microRNA transcriptome. The relatively high cost and low throughput of sequencing bases technologies can potentially be offset by the use of multiplexing. However, multiplexing involves a trade-off between increased number of sequenced samples and reduced number of reads per sample (i.e., lower depth of coverage). To assess the effect of different sequencing depths owing to multiplexing on microRNA differential expression and detection, we sequenced the small RNA of lung tissue samples collected in a clinical setting by multiplexing one, three, six, nine, or 12 samples per lane using the Illumina HiSeq 2000. As expected, the numbers of reads obtained per sample decreased as the number of samples in a multiplex increased. Furthermore, after normalization, replicate samples included in distinct multiplexes were highly correlated (R > 0.97). When detecting differential microRNA expression between groups of samples, microRNAs with average expression >1 reads per million (RPM) had reproducible fold change estimates (signal to noise) independent of the degree of multiplexing. The number of microRNAs detected was strongly correlated with the log2 number of reads aligning to microRNA loci (R = 0.96). However, most additional microRNAs detected in samples with greater sequencing depth were in the range of expression which had lower fold change reproducibility. These findings elucidate the trade-off between increasing the number of samples in a multiplex with decreasing sequencing depth and will aid in the design of large-scale clinical studies exploring microRNA expression and its role in disease.


Subject(s)
MicroRNAs/metabolism , Gene Expression Profiling , Humans , Lung/metabolism , MicroRNAs/genetics , Sequence Analysis, RNA , Transcriptome
3.
Proc Natl Acad Sci U S A ; 110(47): 18946-51, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24158479

ABSTRACT

Smoking is a significant risk factor for lung cancer, the leading cause of cancer-related deaths worldwide. Although microRNAs are regulators of many airway gene-expression changes induced by smoking, their role in modulating changes associated with lung cancer in these cells remains unknown. Here, we use next-generation sequencing of small RNAs in the airway to identify microRNA 4423 (miR-4423) as a primate-specific microRNA associated with lung cancer and expressed primarily in mucociliary epithelium. The endogenous expression of miR-4423 increases as bronchial epithelial cells undergo differentiation into mucociliary epithelium in vitro, and its overexpression during this process causes an increase in the number of ciliated cells. Furthermore, expression of miR-4423 is reduced in most lung tumors and in cytologically normal epithelium of the mainstem bronchus of smokers with lung cancer. In addition, ectopic expression of miR-4423 in a subset of lung cancer cell lines reduces their anchorage-independent growth and significantly decreases the size of the tumors formed in a mouse xenograft model. Consistent with these phenotypes, overexpression of miR-4423 induces a differentiated-like pattern of airway epithelium gene expression and reverses the expression of many genes that are altered in lung cancer. Together, our results indicate that miR-4423 is a regulator of airway epithelium differentiation and that the abrogation of its function contributes to lung carcinogenesis.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinogenesis/metabolism , Cell Differentiation/physiology , Lung Neoplasms/diagnosis , MicroRNAs/metabolism , Respiratory Mucosa/cytology , Animals , Biomarkers, Tumor/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Immunohistochemistry , In Situ Hybridization , Lung Neoplasms/genetics , Mice , MicroRNAs/genetics , Microarray Analysis , Real-Time Polymerase Chain Reaction , Respiratory Mucosa/metabolism
4.
Mol Genet Metab ; 90(4): 449-52, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17270480

ABSTRACT

The enzymatic defect in Pompe disease is insufficient lysosomal acid alpha-glucosidase (GAA) activity which leads to lysosomal glycogen accumulation. We recently introduced a simple and reliable method to measure GAA activity in dried blood spots using Acarbose, a highly selective alpha-glucosidase inhibitor, to eliminate isoenzyme interference. Here we demonstrate that this method efficiently detects late-onset Pompe patients who are frequently misdiagnosed by conventional methods due to residual GAA activity in other tissue types.


Subject(s)
Glycogen Storage Disease Type II/diagnosis , alpha-Glucosidases/blood , Acarbose/pharmacology , Adult , Blood Specimen Collection/methods , Cells, Cultured , Fibroblasts/enzymology , Fluorometry/methods , Glycoside Hydrolase Inhibitors , Humans , Hymecromone/analogs & derivatives , Hymecromone/metabolism , Isoenzymes/blood , Substrate Specificity
5.
Conf Proc IEEE Eng Med Biol Soc ; 2006: 1295-8, 2006.
Article in English | MEDLINE | ID: mdl-17946887

ABSTRACT

This paper discusses the creation of a system for computer-aided communication through automated analysis and processing of electrooculogram signals. In situations of disease or trauma, there may be an inability to communicate with others through standard means such as speech or typing. Eye movement tends to be one of the last remaining active muscle capabilities for people with neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS) also known as Lou Gehrig's disease. Thus, there is a need for eye movement based systems to enable communication. To meet this need, the Telepathix system was designed to accept eye movement commands denoted by looking to the left, looking to the right, and looking straight ahead to navigate a virtual keyboard. Using a ternary virtual keyboard layout and a multiple feature classification model, a typing speed of 6 letters per minute was achieved.


Subject(s)
Artificial Intelligence , Electrooculography/methods , Eye Movements/physiology , Man-Machine Systems , Pattern Recognition, Automated/methods , Task Performance and Analysis , User-Computer Interface , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...