Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Brain Commun ; 6(3): fcae133, 2024.
Article in English | MEDLINE | ID: mdl-38715716

ABSTRACT

White matter hyperintensities (WMH), a common feature of cerebral small vessel disease, are related to worse clinical outcomes after stroke. We assessed the impact of white matter hyperintensity changes over 1 year after minor stroke on change in mobility and dexterity, including differences between the dominant and non-dominant hands and objective in-person assessment versus patient-reported experience. We recruited participants with lacunar or minor cortical ischaemic stroke, performed medical and cognitive assessments and brain MRI at presentation and at 1 year. At both time points, we used the timed-up and go test and the 9-hole peg test to assess mobility and dexterity. At 1 year, participants completed the Stroke Impact Scale. We ran two linear mixed models to assess change in timed-up and go and 9-hole peg test, adjusted for age, sex, stroke severity (National Institutes of Health Stroke Scale), dependency (modified Rankin Score), vascular risk factor score, white matter hyperintensity volume (as % intracranial volume) and additionally for 9-hole peg test: Montreal cognitive assessment, hand (dominant/non-dominant), National Adult Reading Test (premorbid IQ), index lesion side. We performed ordinal logistic regression, corrected for age and sex, to assess relations between timed-up and go and Stroke Impact Scale mobility, and 9-hole peg test and Stroke Impact Scale hand function. We included 229 participants, mean age 65.9 (standard deviation = 11.13); 66% male. 215/229 attended 1-year follow-up. Over 1 year, timed-up and go time increased with aging (standardized ß [standardized 95% Confidence Interval]: 0.124[0.011, 0.238]), increasing National Institutes of Health Stroke Scale (0.106[0.032, 0.180]), increasing modified Rankin Score (0.152[0.073, 0.231]) and increasing white matter hyperintensity volume (0.176[0.061, 0.291]). Men were faster than women (-0.306[0.011, 0.238]). Over 1 year, slower 9-hole peg test was related to use of non-dominant hand (0.290[0.155, 0.424]), aging (0.102[0.012, 0.192]), male sex (0.182[0.008, 0.356]), increasing National Institutes of Health Stroke Scale (0.160 [0.094, 0.226]), increasing modified Rankin Score (0.100[0.032, 0.169]), decreasing Montreal cognitive assessment score (-0.090[-0.167, -0.014]) and increasing white matter hyperintensity volume (0.104[0.015, 0.193]). One year post-stroke, Stroke Impact Scale mobility worsened per second increase on timed-up and go, odds ratio 0.67 [95% confidence interval 0.60, 0.75]. Stroke Impact Scale hand function worsened per second increase on the 9-hole peg test for the dominant hand (odds ratio 0.79 [0.71, 0.86]) and for the non-dominant hand (odds ratio 0.88 [0.83, 0.93]). Decline in mobility and dexterity is associated with white matter hyperintensity volume increase, independently of stroke severity. Mobility and dexterity declined more gradually for stable and regressing white matter hyperintensity volume. Dominant and non-dominant hands might be affected differently. In-person measures of dexterity and mobility are associated with self-reported experience 1-year post-stroke.

2.
J Am Heart Assoc ; 13(3): e032259, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38293936

ABSTRACT

BACKGROUND: White matter hyperintensities (WMHs) might regress and progress contemporaneously, but we know little about underlying mechanisms. We examined WMH change and underlying quantitative magnetic resonance imaging tissue measures over 1 year in patients with minor ischemic stroke with sporadic cerebral small vessel disease. METHODS AND RESULTS: We defined areas of stable normal-appearing white matter, stable WMHs, progressing and regressing WMHs based on baseline and 1-year brain magnetic resonance imaging. In these areas we assessed tissue characteristics with quantitative T1, fractional anisotropy (FA), mean diffusivity (MD), and neurite orientation dispersion and density imaging (baseline only). We compared tissue signatures cross-sectionally between areas, and longitudinally within each area. WMH change masks were available for N=197. Participants' mean age was 65.61 years (SD, 11.10), 59% had a lacunar infarct, and 68% were men. FA and MD were available for N=195, quantitative T1 for N=182, and neurite orientation dispersion and density imaging for N=174. Cross-sectionally, all 4 tissue classes differed for FA, MD, T1, and Neurite Density Index. Longitudinally, in regressing WMHs, FA increased with little change in MD and T1 (difference estimate, 0.011 [95% CI, 0.006-0.017]; -0.002 [95% CI, -0.008 to 0.003] and -0.003 [95% CI, -0.009 to 0.004]); in progressing and stable WMHs, FA decreased (-0.022 [95% CI, -0.027 to -0.017] and -0.009 [95% CI, -0.011 to -0.006]), whereas MD and T1 increased (progressing WMHs, 0.057 [95% CI, 0.050-0.063], 0.058 [95% CI, 0.050 -0.066]; stable WMHs, 0.054 [95% CI, 0.045-0.063], 0.049 [95% CI, 0.039-0.058]); and in stable normal-appearing white matter, MD increased (0.004 [95% CI, 0.003-0.005]), whereas FA and T1 slightly decreased and increased (-0.002 [95% CI, -0.004 to -0.000] and 0.005 [95% CI, 0.001-0.009]). CONCLUSIONS: Quantitative magnetic resonance imaging shows that WMHs that regress have less abnormal microstructure at baseline than stable WMHs and follow trajectories indicating tissue improvement compared with stable and progressing WMHs.


Subject(s)
Cerebral Small Vessel Diseases , White Matter , Male , Humans , Aged , Female , White Matter/diagnostic imaging , White Matter/pathology , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Diffusion Magnetic Resonance Imaging , Cerebral Small Vessel Diseases/diagnostic imaging
3.
Neurobiol Aging ; 30(1): 125-36, 2009 Jan.
Article in English | MEDLINE | ID: mdl-17624630

ABSTRACT

Regions of diffuse periventricular white matter hyperintensities (PVWMH) are a common finding on T(2)-weighted MRI scans of older subjects, but their aetiology remains unclear. The aim of this study was to characterize differences in water diffusion and magnetization transfer MRI parameters between macroscopically normal-appearing white matter (NAWM) and PVWMH in a cohort of normal older subjects. Forty-two non-demented 83-year olds underwent structural, diffusion tensor and magnetization transfer MRI. Mean diffusivity (), fractional anisotropy (FA), axial (lambda(ax)) and radial (lambda(rad)) diffusivity, and magnetization transfer ratio (MTR) were measured in both NAWM and PVWMH in frontal and parieto-occipital white matter, and centrum semiovale. For all three regions, PVWMH had greater , lambda(ax) and lambda(rad) than NAWM, while FA and MTR were significantly reduced compared with normal tissue (p<<0.01). For PVWMH, MTR was significantly correlated (Spearman's rho in the range -0.93 to 0.70; p<0.01) with , FA, lambda(ax) and lambda(rad) in all three regions. Conversely, for NAWM, the only significant correlation between MTR and a water diffusion parameter was for lambda(rad) in parieto-occipital white matter (rho=-0.40; p<0.05), with all other correlations close to the rho=0 level. These data indicate that in normal white matter, characterized by structurally coherent cell membranes, the degree of water molecule diffusion and myelination are held within relatively tight limits. However, within PVWMH, MTR correlates strongly with water diffusion parameters probably because of the pathologically associated neuronal loss, demyelination and gliosis.


Subject(s)
Aging/pathology , Cerebral Ventricles/cytology , Diffusion Magnetic Resonance Imaging/methods , Nerve Fibers, Myelinated/ultrastructure , Age Factors , Aged, 80 and over , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...