Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Ecol Evol ; 13(1): e9728, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36636428

ABSTRACT

Saxifraga section Saxifraga subsection Arachnoideae is a lineage of 12 species distributed mainly in the European Alps. It is unusual in terms of ecological diversification by containing both high elevation species from exposed alpine habitats and low elevation species from shady habitats such as overhanging rocks and cave entrances. Our aims are to explore which of these habitat types is ancestral, and to identify the possible drivers of this remarkable ecological diversification. Using a Hybseq DNA-sequencing approach and a complete species sample we reconstructed and dated the phylogeny of subsection Arachnoideae. Using Landolt indicator values, this phylogenetic tree was used for the reconstruction of the evolution of temperature, light and soil pH requirements in this lineage. Diversification of subsection Arachnoideae started in the late Pliocene and continued through the Pleistocene. Both diversification among and within clades was largely allopatric, and species from shady habitats with low light requirements are distributed in well-known refugia. We hypothesize that low light requirements evolved when species persisting in cold-stage refugia were forced into marginal habitats by more competitive warm-stage vegetation. While we do not claim that such competition resulted in speciation, it very likely resulted in adaptive evolution.

2.
Mol Phylogenet Evol ; 167: 107342, 2022 02.
Article in English | MEDLINE | ID: mdl-34785384

ABSTRACT

Analysing multiple genomic regions while incorporating detection and qualification of discordance among regions has become standard for understanding phylogenetic relationships. In plants, which usually have comparatively large genomes, this is feasible by the combination of reduced-representation library (RRL) methods and high-throughput sequencing enabling the cost effective acquisition of genomic data for thousands of loci from hundreds of samples. One popular RRL method is RADseq. A major disadvantage of established RADseq approaches is the rather short fragment and sequencing range, leading to loci of little individual phylogenetic information. This issue hampers the application of coalescent-based species tree inference. The modified RADseq protocol presented here targets ca. 5,000 loci of 300-600nt length, sequenced with the latest short-read-sequencing (SRS) technology, has the potential to overcome this drawback. To illustrate the advantages of this approach we use the study group Aichryson Webb & Berthelott (Crassulaceae), a plant genus that diversified on the Canary Islands. The data analysis approach used here aims at a careful quality control of the long loci dataset. It involves an informed selection of thresholds for accurate clustering, a thorough exploration of locus properties, such as locus length, coverage and variability, to identify potential biased data and a comparative phylogenetic inference of filtered datasets, accompanied by an evaluation of resulting BS support, gene and site concordance factor values, to improve overall resolution of the resulting phylogenetic trees. The final dataset contains variable loci with an average length of 373nt and facilitates species tree estimation using a coalescent-based summary approach. Additional improvements brought by the approach are critically discussed.


Subject(s)
Crassulaceae , Genome , Genomics/methods , High-Throughput Nucleotide Sequencing , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...