Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Mol Pharm ; 21(4): 1553-1562, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38440796

ABSTRACT

Oral dosage forms are the most widely and frequently used formulations to deliver active pharmaceutical ingredients (APIs), due to their ease of administration and noninvasiveness. Knowledge of intragastric release rates and gastric mixing is crucial for predicting the API release profile, especially for immediate release formulations. However, knowledge of the intragastric fate of oral dosage forms in vivo to date is limited, particularly for dosage forms administered when the stomach is in the fed state. An improved understanding of gastric food processing, dosage form location, disintegration times, and food effects is essential for greater understanding for effective API formulation design. In vitro standard and controlled modeling has played a significant role in predicting the behavior of dosage forms in vivo. However, discrepancies are reported between in vitro and in vivo disintegration times, with these discrepancies being greatest in the fed state. Studying the fate of a dosage form in vivo is a challenging process, usually requiring the use of invasive methods, such as intubation. Noninvasive, whole body imaging techniques can however provide unique insights into this process. A scoping review was performed systematically to identify and critically appraise published studies using MRI to visualize oral solid dosage forms in vivo in healthy human subjects. The review identifies that so far, an all-purpose robust contrast agent or dosage form type has not been established for dosage form visualization and disintegration studies in the gastrointestinal system. Opportunities have been identified for future studies, with particular focus on characterizing dosage form disintegration for development after the consumption food, as exemplified by the standard Food and Drug Administration (FDA) high fat meal.


Subject(s)
Gastrointestinal Tract , Stomach , Humans , Administration, Oral , Stomach/diagnostic imaging , Contrast Media , Magnetic Resonance Imaging/methods , Dosage Forms , Solubility , Tablets
2.
Int J Pharm ; 648: 123574, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37935311

ABSTRACT

Efficient delivery of antiretroviral agents to lymph nodes is important to decrease the size of the HIV reservoir within the lymphatic system. Lamivudine (3TC) is used in first-line regimens for the treatment of HIV. As a highly hydrophilic small molecule, 3TC is not predicted to associate with chylomicrons and therefore should have negligible uptake into intestinal lymphatics following oral administration. Similarly, negligible amounts of 3TC are predicted to be transported into peripheral lymphatics following subcutaneous (SC) injection due to the faster flow rate of blood in comparison to lymph. In this work, we performed pharmacokinetic and biodistribution studies of 3TC in rats following oral lipid-based, oral lipid-free, SC, and intravenous (IV) administrations. In the oral administration studies, mesenteric lymph nodes (MLNs) had significantly higher 3TC concentrations compared to other lymph nodes, with mean tissue:serum ratios ranging from 1.4 to 2.9. However, cells and chylomicrons found in mesenteric lymph showed low-to-undetectable concentrations. In SC studies, administration-side (right) draining inguinal and popliteal lymph nodes had significantly higher concentrations (tissue:serum ratios as high as 3.2) than corresponding left-side nodes. In IV studies, lymph nodes had lower mean tissue:serum ratios ranging from 0.9 to 1.4. We hypothesize that following oral or SC administration, slower permeation of this hydrophilic molecule into blood capillaries may result in considerable passive 3TC penetration into lymphatic vessels. Further studies will be needed to clarify the mechanism of delivery of 3TC and similar antiretroviral drugs into the lymph nodes.


Subject(s)
Anti-HIV Agents , HIV Infections , Rats , Animals , Lamivudine , Tissue Distribution , Lymph Nodes/metabolism , HIV Infections/drug therapy , Chylomicrons/metabolism , Chylomicrons/therapeutic use , Anti-HIV Agents/pharmacokinetics
3.
Eur J Pharm Biopharm ; 191: 90-102, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37634824

ABSTRACT

The establishment of latent cellular and anatomical viral reservoirs is a major obstacle to achieving a cure for people infected by HIV. Mesenteric lymph nodes (MLNs) are one of the most important anatomical reservoirs of HIV. Suboptimal levels of antiretroviral (ARVs) drugs in these difficult-to-penetrate viral reservoirs is one of the limitations of current antiretroviral therapy (ART) regimens. This study aimed to design and assess highly lipophilic ester prodrugs of dolutegravir (DTG) formulated with long-chain triglyceride (LCT) for delivery of DTG to the viral reservoir in mesenteric lymph and MLNs. A number of alkyl ester prodrugs of DTG were designed based on the predicted affinity to chylomicrons (CM), and the six most promising prodrugs were selected and synthesised. The synthesised prodrugs were further assessed for their intestinal lymphatic transport potential and biotransformation in biorelevant media in vitro and ex vivo. DTG and the most promising prodrug (prodrug 5) were then assessed in pharmacokinetic and biodistribution studies in rats. Although oral administration of 5 mg/kg of unmodified DTG (an allometrically scaled dose from humans) with or without lipids achieved concentrations above protein binding-adjusted IC90 (PA-IC90) (64 ng/mL) in most tissues, the drug was not selectively targeted to MLNs. The combination of lipophilic ester prodrug and LCT-based formulation approach improved the targeting selectivity of DTG to MLNs 4.8-fold compared to unmodified DTG. However, systemic exposure to DTG was limited, most likely due to poor intestinal absorption of the prodrug following oral administration. In vitro lipolysis showed a good correlation between micellar solubilisation of the prodrug and systemic exposure to DTG in rats in vivo. Thus, it is prudent to include in vitro lipolysis in the early assessment of orally administered drugs and prodrugs in lipidic formulations, even when intestinal lymphatic transport is involved in the absorption pathway. Further studies are needed to clarify the underlying mechanisms of low systemic bioavailability of DTG following oral administration of the prodrug and potential ways to overcome this limitation.


Subject(s)
Prodrugs , Humans , Rats , Animals , Prodrugs/pharmacokinetics , Esters , Tissue Distribution , Intestines , Triglycerides/metabolism , Administration, Oral
4.
Nanomedicine ; 49: 102664, 2023 04.
Article in English | MEDLINE | ID: mdl-36813014

ABSTRACT

We investigated how the biodistribution of cannabidiol (CBD) within the central nervous system (CNS) is influenced by two different formulations, an oil-in-water (O/W) nanoemulsion and polymer-coated nanoparticles (PCNPs). We observed that both CBD formulations administered were preferentially retained in the spinal cord, with high concentrations reaching the brain within 10 min of administration. The CBD nanoemulsion reached Cmax in the brain at 210 ng/g within 120 min (Tmax), whereas the CBD PCNPs had a Cmax of 94 ng/g at 30 min (Tmax), indicating that rapid brain delivery can be achieved through the use of PCNPs. Moreover, the AUC0-4h of CBD in the brain was increased 3.7-fold through the delivery of the nanoemulsion as opposed to the PCNPs, indicating higher retention of CBD at this site. Both formulations exhibited immediate anti-nociceptive effects in comparison to the respective blank formulations.


Subject(s)
Cannabidiol , Nanoparticles , Humans , Tissue Distribution , Pain/drug therapy , Brain , Administration, Oral
5.
Int J Pharm ; 635: 122651, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36720447

ABSTRACT

Delivery to the brain is a challenging task due to its protection by the blood-brain barrier (BBB). Lipids and fatty acids are reported to affect the permeability of the BBB, although this has not been reported following oral administration. Cannabidiol (CBD) has high therapeutic potential in the brain, therefore, this work investigated CBD delivery to anatomical brain regions following oral administration in lipid-based and lipid-free vehicles. All formulations resulted in a short brain Tmax (1 h) and brain-plasma ratios ≥ 3.5, with retention up to 18 h post administration. The highest CBD delivery was observed in the olfactory bulb and striatum, and the medulla pons and cerebellum the lowest. The lipid-free vehicle led to the highest levels of CBD in the whole brain. However, when each anatomical region was assessed individually, the long chain triglyceride-rich rapeseed oil formulation commonly showed optimal performance. The medium chain triglyceride-rich coconut oil formulation did not result in the highest CBD concentration in any brain region. Overall, differences in CBD delivery to the whole brain and various brain regions were observed following administration in different formulations, indicating that the oral formulation selection may be important for optimal delivery to specific regions of the brain.


Subject(s)
Cannabidiol , Administration, Oral , Brain , Excipients , Triglycerides
6.
Eur J Pharm Biopharm ; 182: 53-61, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36435313

ABSTRACT

Systemic drug delivery to the central nervous system (CNS) has been historically impeded by the presence of the blood brain barrier rendering many therapies inefficacious to any cancer cells residing within the brain. Therefore, local drug delivery systems are being developed to overcome this shortfall. Here we have manufactured polymeric microneedle (MN) patches, which can be anchored within a resection cavity site following surgical removal of a tumour such as isocitrate dehydrogenase wild type glioblastoma (GBM). These MN patches have been loaded with polymer coated nanoparticles (NPs) containing cannabidiol (CBD) or olaparib (OLA) and applied to an in vitro brain simulant and ex vivo rat brain tissue to assess drug release and distance of penetration. MN patches loaded with methylene blue dye were placed into a cavity of 0.6 % agarose to simulate brain tissue. The results showed that clear channels were generated by the MNs and the dye spread laterally throughout the agarose. When loaded with CBD-NPs, the agarose showed a CBD concentration of 12.5 µg/g at 0.5 cm from the MN insertion site. Furthermore, high performance liquid chromatography of ex vivo brain tissue following CBD-NP/MN patch insertion showed successful delivery of 59.6 µg/g into the brain tissue. Similarly, OLA-NP loaded MN patches showed delivery of 5.2 µg/g OLA into agarose gel at 0.5 cm distance from the insertion site. Orbitrap secondary ion mass spectrometry (OrbiSIMS) analysis confirmed the presence of OLA and the MN patch at up to 6 mm away from the insertion site following its application to a rat brain hemisphere. This data has provided insight into the capabilities and versatility of MN patches for use in local brain drug delivery, giving promise for future research.


Subject(s)
Brain Neoplasms , Glioblastoma , Nanoparticles , Animals , Rats , Sepharose , Drug Delivery Systems/methods , Nanoparticles/chemistry , Brain Neoplasms/drug therapy , Brain , Needles , Administration, Cutaneous
8.
Int J Pharm ; 624: 121947, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35753538

ABSTRACT

Although natural sesame oil has been shown to facilitate the lymphatic delivery and oral bioavailability of the highly lipophilic drug cannabidiol (CBD), considerable variability remains an unresolved challenge. Vegetable oils differ substantially in composition, which could lead to differences in promotion of intestinal lymphatic transport of lipophilic drugs. Therefore, the differences in composition of sesame, sunflower, peanut, soybean, olive and coconut oils and their corresponding role as vehicles in promoting CBD lymphatic targeting and bioavailability were investigated in this study. The comparative analysis suggests that the fatty acids profile of vegetable oils is overall similar to the fatty acids profile in the corresponding chylomicrons in rat lymph. However, arachidonic acid (C20:4), was introduced to chylomicrons from endogenous nondietary sources. Overall, fatty acid composition of natural vegetable oils vehicles affected the intestinal lymphatic transport and bioavailability of CBD following oral administration in this work. Olive oil led to the highest concentration of CBD in the lymphatic system and in the systemic circulation in comparison to the other natural vegetable oils following oral administration in rats.


Subject(s)
Cannabidiol , Plant Oils , Animals , Biological Availability , Chylomicrons , Fatty Acids , Lymphatic System , Pharmaceutical Preparations , Plant Oils/chemistry , Rats
9.
Eur J Pharm Biopharm ; 174: 29-34, 2022 May.
Article in English | MEDLINE | ID: mdl-35364254

ABSTRACT

Efficient delivery of highly lipophilic drugs or prodrugs to the mesenteric lymph nodes (MLN) can be achieved following oral administration with lipids. However, it remains unclear which specific MLN can be targeted and to what extent. Moreover, the efficiency of drug delivery to the retroperitoneal lymph nodes (RPLN) has not been assessed. The aim of this study was to assess the distribution of a highly lipophilic model drug cannabidiol (CBD), known to undergo intestinal lymphatic transport following administration with lipids, into specific MLN and RPLN in rats at various time-points post dosing. In vivo studies showed that at 2 h following administration, significantly higher concentrations of CBD were present in the region second from the apex of the MLN chain. From 3 h following administration, concentrations in all MLN were similar. CBD was also found at substantial levels in RPLN. This study demonstrates that drug concentrations in specific MLN are different, at least at the peak of the absorption process. Moreover, in addition to the MLN, the RPLN may also be targeted by oral route of administration, which may have further implications for treatment of a range of diseases.


Subject(s)
Cannabidiol , Prodrugs , Administration, Oral , Animals , Excipients , Lipids , Lymph Nodes , Rats
10.
Eur J Pharm Biopharm ; 172: 112-122, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35149190

ABSTRACT

This review outlines the feasibility of oral lipid-based targeted delivery of drugs to the brain, including permeation of the central nervous system's (CNS) protective blood-brain barrier (BBB). The structure of the BBB and disruption caused by varying disease states highlights the need for disease-specific approaches to alter permeation. Disruption during disease state, and the effects of certain molecules on the barrier, demonstrate the possibility of exploiting such BBB disruption for drug delivery. Many administration methods can be used to target the brain, but oral administration is considered ideal for chronic, long-term illnesses. Several lipids that have been shown to facilitate drug delivery into the brain after systemic administration, but could also be delivered orally, are discussed, including oleic acid, triolein, alkylglycerol, and conjugates of linoleic and myristic acids. Current data reveal the potential for the use of such lipids as part of oral formulations for delivery to the brain by reaching sufficient plasma levels after administration to increase the permeability of the BBB. However, gaps in the literature remain regarding the concentrations and form of most lipids required to produce the desired effects. The use of lipids via oral delivery for brain targeting has not been investigated thoroughly enough to determine with certainty if similar permeability-enhancing effects would be observed as for parenteral administration. In conclusion, further research to fill research gaps is needed, but the limited evidence suggests that oral lipid-based drug delivery for brain targeting is potentially feasible.


Subject(s)
Blood-Brain Barrier , Drug Delivery Systems , Brain , Lipids/pharmacology , Permeability
11.
Pharmaceutics ; 14(2)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35214003

ABSTRACT

Oral specially coated formulations have the potential to improve treatment outcomes of a range of diseases in distal intestinal tract whilst limiting systemic drug absorption and adverse effects. Their development is challenging, partly because of limited knowledge of the physiological and pathological distal gastrointestinal factors, including colonic chyme fluid distribution and motor function. Recently, non-invasive techniques such as magnetic resonance imaging (MRI) have started to provide novel important insights. In this feasibility study, we formulated a coated capsule consisting of a hydroxypropyl methylcellulose (HPMC) shell, coated with a synthetic polymer based on polymethacrylate-based copolymer (Eudragit®) that can withstand the upper gastrointestinal tract conditions. The capsule was filled with olive oil as MRI-visible marker fluid. This allowed us to test the ability of MRI to track such a coated capsule in the gastrointestinal tract and to assess whether it is possible to image its loss of integrity by exploiting the ability of MRI to image fat and water separately and in combination. Ten healthy participants were administered capsules with varying amounts of coating and underwent MRI imaging of the gastrointestinal tract at 45 min intervals. The results indicate that it is feasible to track the capsules present in the gastrointestinal tract at different locations, as they were detected in all 10 participants. By the 360 min endpoint of the study, in nine participants the capsules were imaged in the small bowel, in eight participants in the terminal ileum, and in four in the colon. Loss of capsule integrity was observed in eight participants, occurring predominantly in distal intestinal regions. The data indicate that the described approach could be applied to assess performance of oral formulations in undisturbed distal gastrointestinal regions, without the need for ionizing radiation or contrast agents.

12.
Virulence ; 12(1): 2946-2956, 2021 12.
Article in English | MEDLINE | ID: mdl-34793280

ABSTRACT

The struggle to control the COVID-19 pandemic is made challenging by the emergence of virulent SARS-CoV-2 variants. To gain insight into their replication dynamics, emergent Alpha (A), Beta (B) and Delta (D) SARS-CoV-2 variants were assessed for their infection performance in single variant- and co-infections. The effectiveness of thapsigargin (TG), a recently discovered broad-spectrum antiviral, against these variants was also examined. Of the 3 viruses, the D variant exhibited the highest replication rate and was most able to spread to in-contact cells; its replication rate at 24 h post-infection (hpi) based on progeny viral RNA production was over 4 times that of variant A and 9 times more than the B variant. In co-infections, the D variant boosted the replication of its co-infected partners at the expense of its own initial performance. Furthermore, co-infection with AD or AB combination conferred replication synergy where total progeny (RNA) output was greater than the sum of corresponding single-variant infections. All variants were highly sensitive to TG inhibition. A single pre-infection priming dose of TG effectively blocked all single-variant infections and every combination (AB, AD, BD variants) of co-infection at greater than 95% (relative to controls) at 72 hpi. Likewise, TG was effective in inhibiting each variant in active preexisting infection. In conclusion, against the current backdrop of the dominant D variant that could be further complicated by co-infection synergy with new variants, the growing list of viruses susceptible to TG, a promising host-centric antiviral, now includes a spectrum of contemporary SARS-CoV-2 viruses.


Subject(s)
COVID-19 Drug Treatment , Coinfection , SARS-CoV-2 , Thapsigargin , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Pandemics , SARS-CoV-2/drug effects , Thapsigargin/pharmacology , Thapsigargin/therapeutic use
13.
Pharmaceutics ; 13(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34575420

ABSTRACT

Dietary lipids and some pharmaceutical lipid excipients can facilitate the targeted delivery of drugs to the intestinal lymphatics. Here, the feasibility of magnetic resonance imaging (MRI) for imaging lipid uptake into the intestinal lymphatics was assessed, shedding light on which lymph nodes can be targeted using this approach. Three healthy male volunteers were scanned at 3.0 T at baseline, 120, 180, 240, and 300 min post high-fat meal. A sagittal multi-slice image was acquired using a diffusion-weighted whole-body imaging sequence with background suppression (DWIBS) (pre inversion TI = 260 ms). Changes in area, major, and minor axis length were compared at each time point. Apparent diffusion coefficient (ADC) was calculated (b = 0 and 600 s/mm2) across eight slices. An average of 22 nodes could be visualised across all time points. ADC increased at 120 and 180 min compared to the baseline in all three participants by an average of 9.2% and 6.8%, respectively. In two participants, mean node area and major axis lengths increased at 120 and 180 min relative to the baseline. In conclusion, the method described shows potential for repeated lymph node measurements and the tracking of lipid uptake into the lymphatics. Further studies should focus on methodology optimisation in a larger cohort.

14.
Pharmaceutics ; 13(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34575426

ABSTRACT

Oral sesame oil-based formulation facilitates the delivery of poorly water-soluble drug cannabidiol (CBD) to the lymphatic system and blood circulation. However, this natural oil-based formulation also leads to considerable variability in absorption of CBD. In this work, the performance of lipid-based formulations with the addition of medium-chain triglyceride (MCT) or surfactants to the sesame oil vehicle has been tested in vitro and in vivo using CBD as a model drug. The in vitro lipolysis has shown that addition of the MCT leads to a higher distribution of CBD into the micellar phase. Further addition of surfactants to MCT-containing formulations did not improve distribution of the drug into the micellar phase. In vivo, formulations containing MCT led to lower or similar concentrations of CBD in serum, lymph and MLNs, but with reduced variability. MCT improves the emulsification and micellar solubilization of CBD, but surfactants did not facilitate further the rate and extent of lipolysis. Even though addition of MCT reduces the variability, the in vivo performance for the extent of both lymphatic transport and systemic bioavailability remains superior with a pure natural oil vehicle.

15.
ACS Appl Mater Interfaces ; 13(30): 35266-35280, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34310112

ABSTRACT

The lack of clinical response to the alkylating agent temozolomide (TMZ) in pediatric diffuse midline/intrinsic pontine glioma (DIPG) has been associated with O6-methylguanine-DNA-methyltransferase (MGMT) expression and mismatch repair deficiency. Hence, a potent N(3)-propargyl analogue (N3P) was derived, which not only evades MGMT but also remains effective in mismatch repair deficient cells. Due to the poor pharmacokinetic profile of N3P (t1/2 < 1 h) and to bypass the blood-brain barrier, we proposed convection enhanced delivery (CED) as a method of administration to decrease dose and systemic toxicity. Moreover, to enhance N3P solubility, stability, and sustained distribution in vivo, either it was incorporated into an apoferritin (AFt) nanocage or its sulfobutyl ether ß-cyclodextrin complex was loaded into nanoliposomes (Lip). The resultant AFt-N3P and Lip-N3P nanoparticles (NPs) had hydrodynamic diameters of 14 vs 93 nm, icosahedral vs spherical morphology, negative surface charge (-17 vs -34 mV), and encapsulating ∼630 vs ∼21000 N3P molecules per NP, respectively. Both NPs showed a sustained release profile and instant uptake within 1 h incubation in vitro. In comparison to the naked drug, N3P NPs demonstrated stronger anticancer efficacy against 2D TMZ-resistant DIPG cell cultures [IC50 = 14.6 (Lip-N3P) vs 32.8 µM (N3P); DIPG-IV) and (IC50 = 101.8 (AFt-N3P) vs 111.9 µM (N3P); DIPG-VI)]. Likewise, both N3P-NPs significantly (P < 0.01) inhibited 3D spheroid growth compared to the native N3P in MGMT+ DIPG-VI (100 µM) and mismatch repair deficient DIPG-XIX (50 µM) cultures. Interestingly, the potency of TMZ was remarkably enhanced when encapsulated in AFt NPs against DIPG-IV, -VI, and -XIX spheroid cultures. Dynamic PET scans of CED-administered zirconium-89 (89Zr)-labeled AFt-NPs in rats also demonstrated substantial enhancement over free 89Zr radionuclide in terms of localized distribution kinetics and retention within the brain parenchyma. Overall, both NP formulations of N3P represent promising approaches for treatment of TMZ-resistant DIPG and merit the next phase of preclinical evaluation.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Drug Carriers/chemistry , Glioma/drug therapy , Nanoparticles/chemistry , Temozolomide/analogs & derivatives , Temozolomide/therapeutic use , Animals , Apoferritins/chemistry , Cell Line, Tumor , Humans , Liposomes/chemistry , Male , Rats, Wistar , Spheroids, Cellular/drug effects , beta-Cyclodextrins/chemistry
16.
Eur J Pharm Biopharm ; 165: 106-112, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33991611

ABSTRACT

For treatment of chronic cancers, the oral administration route is preferred as it provides numerous advantages over other delivery routes. However, these benefits of oral chemotherapy can be limited due to unfavorable pharmacokinetics. Accordingly, pharmacokinetic development of chemotherapeutic agents is crucial to the improvement of cancer treatment. In this study, assessment and optimization of biopharmaceutical properties of a promising drug candidate for cyclin-dependent kinase 9 (CDK9) inhibitor (DF030263) was performed to promote oral delivery. Oral bioavailability of DF030263 in fasted rats was 23.8%, and a distinct double-peak phenomenon was observed. A two-site absorption windows mechanism was proposed as a possible explanation to the phenomenon. The two-site absorption window hypothesis was supported by in vitro solubility assays in biorelevant fluids with different pH levels, as well as by in silico simulation by GastroPlus™. Controlled release to the colon was conducted in rats in order to exploit the colonic absorption window but did not improve the oral bioavailability. On the other hand, oral administration at postprandial conditions in rats (performed based on the high in vitro solubility in fed state simulated fluid and reduced pH-dependency) resulted in an almost 3-fold increase in bioavailability to 63.6%. In conclusion, this study demonstrates an efficient in vitro-in vivo-in silico drug development approach for improving the oral bioavailability of DF030263, a promising candidate for the treatment of chronic lymphocytic leukemia.


Subject(s)
Cyclin-Dependent Kinase 9/antagonists & inhibitors , Intestinal Absorption/physiology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Postprandial Period/physiology , Protein Kinase Inhibitors/administration & dosage , Administration, Oral , Animals , Biological Availability , Colon/metabolism , Computer Simulation , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Fasting , Food-Drug Interactions , Humans , Infusions, Intravenous , Intestinal Mucosa/metabolism , Male , Models, Biological , Protein Kinase Inhibitors/pharmacokinetics , Rats , Solubility
17.
Int J Pharm ; 602: 120621, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33892057

ABSTRACT

The introduction of combination antiretroviral therapy (cART) led to substantial improvement in mortality and morbidity of HIV-1 infection. However, the poor penetration of antiretroviral agents to HIV-1 reservoirs limit the ability of the antiretroviral agents to eliminate the virus. Mesenteric lymph nodes (MLNs) are one of the main HIV-1 reservoirs in patients under suppressive cART. Intestinal lymphatic absorption pathway substantially increases the concentration of lipophilic drugs in mesenteric lymph and MLNs when they are co-administered with long-chain triglyceride (LCT). Chylomicrons (CM) play a crucial role in the intestinal lymphatic absorption as they transport drugs to the lymph lacteals rather than blood capillary by forming CM-drug complexes in the enterocytes. Thus, lipophilic antiretroviral drugs could potentially be delivered to HIV-1 reservoirs in MLNs by LCT-based formulation approach. In this study, protease inhibitors (PIs) were initially screened for their potential for intestinal lymphatic targeting using a computational model. The candidates were further assessed for their experimental affinity to CM. Tipranavir (TPV) was the only-candidate with substantial affinity to both artificial and natural CM in vitro and ex vivo. Pharmacokinetics and biodistribution studies were then performed to evaluate the oral bioavailability and intestinal lymphatic targeting of TPV in rats. The results showed similar oral bioavailability of TPV with and without co-administration of LCT vehicle. Although LCT-based formulation led to 3-fold higher concentrations of TPV in mesenteric lymph compared to plasma, the levels of the drug in MLNs were similar to plasma in both LCT-based and lipid-free formulation groups. Thus, LCT-based formulation approach alone was not sufficient for effective delivery of TPV to MLNs. Future efforts should be directed to a combined highly lipophilic prodrugs/lipid-based formulation approach to target TPV, other PIs and potentially other classes of antiretroviral agents to viral reservoirs within the mesenteric lymphatic system.


Subject(s)
HIV-1 , Administration, Oral , Animals , Humans , Lymph Nodes/metabolism , Pyridines , Pyrones , Rats , Sulfonamides , Tissue Distribution , Triglycerides
18.
Eur J Pharm Biopharm ; 162: 43-49, 2021 May.
Article in English | MEDLINE | ID: mdl-33677067

ABSTRACT

Lipid-based formulations play a significant role in oral delivery of lipophilic drugs. Previous studies have shown that natural sesame oil promotes the intestinal lymphatic transport and oral bioavailability of the highly lipophilic drug cannabidiol (CBD). However, both lymphatic transport and systemic bioavailability were also associated with considerable variability. The aim of this study was to test the hypothesis that pre-digested lipid formulations (oleic acid, linoleic acid, oleic acid with 2-oleoylglycerol, oleic acid with 2-oleoylglycerol and oleic acid with glycerol) could reduce variability and increase the extent of the intestinal lymphatic transport and oral bioavailability of CBD. The in vivo studies in rats showed that pre-digested or purified triglyceride did not improve the lymphatic transport and bioavailability of CBD in comparison to sesame oil. Moreover, the results suggest that both the absorption of lipids and the absorption of co-administered CBD were more efficient following administration of natural sesame oil vehicle compared with pre-digested lipids or purified trioleate. Although multiple small molecule constituents and unique fatty acid compositions could potentially contribute to a better performance of sesame oil in oral absorption of lipids or CBD, further investigation will be needed to identify the mechanisms involved.


Subject(s)
Cannabidiol/pharmacokinetics , Drug Compounding/methods , Excipients/chemistry , Intestinal Absorption , Sesame Oil/chemistry , Administration, Oral , Animals , Area Under Curve , Biological Availability , Cannabidiol/administration & dosage , Cannabidiol/chemistry , Intestinal Mucosa/metabolism , Linoleic Acid/chemistry , Lymphatic Vessels/metabolism , Male , Models, Animal , Oleic Acid/chemistry , Rats , Tissue Distribution , Triolein/chemistry
19.
Viruses ; 13(2)2021 02 03.
Article in English | MEDLINE | ID: mdl-33546185

ABSTRACT

The long-term control strategy of SARS-CoV-2 and other major respiratory viruses needs to include antivirals to treat acute infections, in addition to the judicious use of effective vaccines. Whilst COVID-19 vaccines are being rolled out for mass vaccination, the modest number of antivirals in use or development for any disease bears testament to the challenges of antiviral development. We recently showed that non-cytotoxic levels of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, induces a potent host innate immune antiviral response that blocks influenza A virus replication. Here we show that TG is also highly effective in blocking the replication of respiratory syncytial virus (RSV), common cold coronavirus OC43, SARS-CoV-2 and influenza A virus in immortalized or primary human cells. TG's antiviral performance was significantly better than remdesivir and ribavirin in their respective inhibition of OC43 and RSV. Notably, TG was just as inhibitory to coronaviruses (OC43 and SARS-CoV-2) and influenza viruses (USSR H1N1 and pdm 2009 H1N1) in separate infections as in co-infections. Post-infection oral gavage of acid-stable TG protected mice against a lethal influenza virus challenge. Together with its ability to inhibit the different viruses before or during active infection, and with an antiviral duration of at least 48 h post-TG exposure, we propose that TG (or its derivatives) is a promising broad-spectrum inhibitor against SARS-CoV-2, OC43, RSV and influenza virus.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus OC43, Human/drug effects , Influenza A Virus, H1N1 Subtype/drug effects , Respiratory Syncytial Virus, Human/drug effects , SARS-CoV-2/drug effects , Thapsigargin/pharmacology , Animals , Antiviral Agents/therapeutic use , Betacoronavirus/physiology , Cell Line , Cell Line, Tumor , Cells, Cultured , Coronavirus OC43, Human/physiology , Endoplasmic Reticulum Stress , Humans , Influenza A Virus, H1N1 Subtype/physiology , Mice , Microbial Sensitivity Tests , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Respiratory Syncytial Virus, Human/physiology , Ribavirin/pharmacology , SARS-CoV-2/physiology , Thapsigargin/therapeutic use , Virus Replication/drug effects
20.
Eur J Pharm Biopharm ; 160: 125-133, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33524535

ABSTRACT

Drug release within the oral cavity can be of paramount importance for formulations that are designed for specific purposes such as taste-masking, faster onset of therapeutic action, localization of treatment or avoidance of first-pass metabolism. Preclinical methods for assessment of dissolution in the oral cavity are necessary for design and development of these formulation but currently there is no consensus on what variables should be defined to achieve biorelevance in these tests. In this study, biorelevant simulated salivary fluids (SSFs) that can be uniformly applied for oral cavity dissolution testing were developed. Unstimulated saliva (US) SSF and stimulated saliva (SS) SSF were separately developed since the two states significantly differ. Physicochemical properties including pH, buffer capacity, surface tension and viscosity were assessed during development and optimised to mimic human saliva (HS). In order to account for the salivary proteins in HS, use of bovine submaxillary mucin (BSM) and porcine gastric mucin (PGM) in SSFs was evaluated. Following optimisation of the SSFs, biorelevance of the developed SSFs to HS was assessed by their comparative physicochemical properties as well as dissolution profiles of three diverse model compounds (sildenafil citrate, efavirenz, and caffeine) which showed comparable profiles between the SSFs and HS. This work addresses the lack of uniformed biorelevant dissolution media for oral cavity dissolution studies and provides a basis for standardised dissolution tests that provide consistency and harmonisation in future oral cavity dissolution studies. We envisage that this will have a positive impact on the development of new medicines that require functionality in the oral cavity.


Subject(s)
Drug Development/methods , Drug Liberation , Mouth/metabolism , Saliva/chemistry , Administration, Oral , Animals , Cattle , Chemistry, Pharmaceutical , Humans , Hydrogen-Ion Concentration , Mucins/chemistry , Saliva/metabolism , Solubility , Surface Tension , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...