Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Med Chem ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013123

ABSTRACT

A systematic study of trends in the lipophilicity of prominent representatives of the opioid family, including natural, semisynthetic, synthetic, and endogenous neuropeptide opioids, is described. This was enabled by a straightforward 1H NMR-based logP/D determination method developed for compounds holding at least one aromatic hydrogen atom. Moreover, the new method enables a direct simultaneous logD determination of opioid mixtures, overcoming the high sensitivity of this family to the measurement conditions, which is critical when a determination of the exact ΔlogD values of matched pairs is required. Interpretation of the experimental ΔlogD7.4 values of selected matched pairs, focusing inter alia on the 3-OMe and 14-OMe motifs in morphinan opioids, is suggested with the aid of DFT calculations and may be useful for the discovery of new opioid therapeutics.

2.
J Mass Spectrom ; 59(1): e4994, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38108525

ABSTRACT

Fentanyl and its non-pharmaceutical analogues (NPFs) are potent synthetic opioids, traditionally used for pain management, with ever-increasing illicit uses. Tightening the regulation for known fentanyls leads to new synthetic analogues in the opioid market. Furthermore, the Organization for the Prohibition of Chemical Weapons (OPCW) has recently issued a decision regarding aerosolized use of central nervous system (CNS)-acting agents, such as fentanyl and its analogues, under the concern that these materials could be misused for terror or war purposes. The ever-increasing development of new fentanyl analogues makes the task of detection and identification of these new, unknown analogues crucial. In this work, we introduce an automated tool for the detection and putative identification of "unknown" fentanyl analogues, using liquid chromatography-mass spectrometry (LC-MS) (high-resolution mass spectrometry [HRMS]) analysis, subsequently followed by data processing using the "Compound Discoverer" software. This software, in our modified use, enabled the automatic detection of various fentanyl analogues, by "digging" out components and comparing them to pre-calculated theoretical molecular ions of possible modifications or transformations on the fentanyl backbone structure (no library or database used). Subsequently, structural elucidation for the proposed component of interest is carried out by automated MS/MS data interpretation, as performed by the software. This method was explored on 12 fentanyl-based "unknown" analogues used as model examples, including chemical modifications such as fluorination and methylation. In all tested compounds, automatic detection and identification were achieved, even at concentrations as low as 1 ng/mL in an environmental soil matrix extract.


Subject(s)
Fentanyl , Tandem Mass Spectrometry , Analgesics, Opioid , Databases, Factual , Software
3.
Commun Chem ; 6(1): 197, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37715018

ABSTRACT

Combined molecular, physicochemical and chemical properties of electrophilic warheads can be applied to create covalent drugs with diverse facets. Here we study these properties in fluorinated diketones (FDKs) and their multicomponent equilibrium systems in the presence of protic nucleophiles, revealing the potential of the CF2(CO)2 group to act as a multifaceted warhead for reversible covalent drugs. The equilibria compositions of various FDKs in water/octanol contain up to nine species. A simultaneous direct species-specific 19F-NMR-based log P determination of these complex equilibria systems was achieved and revealed in some cases lipophilic to hydrophilic shifts, indicating possible adaptation to different environments. This was also demonstrated in 19F-MAS-NMR-based water-membrane partitioning measurements. An interpretation of the results is suggested by the aid of a DFT study and 19F-DOSY-NMR spectroscopy. In dilute solutions, a model FDK reacted with protected cysteine to form two hemi-thioketal regioisomers, indicating possible flexible regio-reactivity of CF2(CO)2 warheads toward cysteine residues.

4.
Chemistry ; 29(7): e202202939, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36374157

ABSTRACT

Fluorine atoms play an important role in all branches of chemistry and accordingly, it is very important to study their unique and varied effects systematically, in particular, the structure-physicochemical properties relationship. The present study describes exceptional physicochemical effects resulting from a H/F exchange at the methylene bridge of gem-difunctional compounds. The Δlog P(CF2-CH2) values, that is, the change in lipophilicity, observed for the CH2 /CF2 replacement in various α,α-phenoxy- and thiophenoxy-esters/amides, diketones, benzodioxoles and more, fall in the range of 0.6-1.4 units, which for most cases, is far above the values expected for such a replacement. Moreover, for compounds holding more than one such gem-difunctional moiety, the effect is nearly additive, so one can switch from a hydrophilic compound to a lipophilic one in a limited number of H/F exchanges. DFT studies of some of these systems revealed that polarity, conformational preference as well as charge distributions are strongly affected by such hydrogen to fluorine atom substitution. The pronounced effects described, are a result of the interplay between changes in polarity, H-bond basicity and molecular volume, which were obtained with a very low 'cost' in terms of molecular weight or steric effects and may have a great potential for implementation in various fields of chemical sciences.

5.
J Am Soc Mass Spectrom ; 33(8): 1541-1547, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35786979

ABSTRACT

V-type nerve agents are among the most toxic organophosphorus chemical warfare agents, and they are under strict regulation and supervision by the OPCW (Organization for the Prohibition of Chemical Weapons). The V-type class of materials refers to a potentially large number of analogues and isomers. In order to expose instances of unfulfillment of the OPCW treaty, it is essential to have the ability to detect and identify "unknown" analogues of this family, even in the absence of an analytical standard. This work demonstrates a new automated tool for the detection and identification of V-type analogues, using high-resolution-accurate-mass LC-MS analysis, followed by "Compound Discoverer" software data processing. This software, originally developed for metabolism and metabolomics screening, is used here to automatically detect various V-type analogues by picking peaks and comparing them to "in-silico" calculated modifications made on a predefined basic V-backbone structure (according to the OPCW definitions for V-type agents). Subsequently, a complete structural elucidation for the proposed molecular formula is obtained by MS/MS data analysis of the suspected component, for both the V-type analogue (using ESI(+) analysis) as well as its hydrolysis product (using ESI(-) analysis) for a better elucidation of the phosphonate "head" structure. This method was found to be useful for the detection and identification of several "unknown" analogues, at low ng/mL levels in soil extracts.


Subject(s)
Chemical Warfare Agents , Nerve Agents , Chemical Warfare Agents/analysis , Chemical Warfare Agents/chemistry , Chromatography, Liquid/methods , Nerve Agents/analysis , Software , Tandem Mass Spectrometry/methods
6.
J Med Chem ; 65(12): 8511-8524, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35678759

ABSTRACT

Systematically studying the lipophilicity of phosphorus compounds is of great importance for many chemical and biological fields and particularly for medicinal chemistry. Here, we report on the study of trends in the lipophilicity of a wide set of phosphorus compounds relevant to drug design including phosphates, thiophosphates, phosphonates, thiophosphonates, bis-phosphonates, and phosphine chalcogenides. This was enabled by the development of a straightforward log P determination method for phosphorus compounds based on 31P-NMR spectroscopy. The log P values measured ranged between -3.2 and 3.6, and the trends observed were interpreted using a DFT study of the dipole moments and by H-bond basicity (pKHB) measurements of selected compounds. Clear signal separation in 31P-NMR spectroscopy grants the method high tolerability to impurities. Moreover, the wide range of chemical shifts for the phosphorus nucleus (250 to -250 ppm) enables a direct simultaneous log P determination of phosphorus compound mixtures in a single shake-flask experiment and 31P-NMR analysis.


Subject(s)
Organophosphonates , Phosphorus Compounds , Magnetic Resonance Spectroscopy/methods , Phosphorus/chemistry
7.
J Med Chem ; 64(8): 4516-4531, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33844540

ABSTRACT

Modulation of the H-bond basicity (pKHB) of various functional groups (FGs) by attaching fluorine functions and its impact on lipophilicity and bioisosterism considerations are described. In general, H/F replacement at the α-position to H-bond acceptors leads to a decrease of the pKHB value, resulting, in many cases, in a dramatic increase in the compounds' lipophilicity (log Po/w). In the case of α-CF2H, we found that these properties may also be affected by intramolecular H-bonds between CF2H and the FG. A computational study of ketone and sulfone series revealed that α-fluorination can significantly affect overall polarity, charge distribution, and conformational preference. The unique case of α-di- and trifluoromethyl ketones, which exist in octanol/water phases as ketone, hemiketal, and gem-diol forms, in equilibrium, prevents direct log Po/w determination by conventional methods, and therefore, the specific log Po/w values of these species were determined directly, for the first time, using Linclau's 19F NMR-based method.


Subject(s)
Fluorine/chemistry , Ketones/chemistry , Density Functional Theory , Halogenation , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Isomerism , Ketones/chemical synthesis , Kinetics , Magnetic Resonance Spectroscopy , Pyridines/chemical synthesis , Pyridines/chemistry , Sulfones/chemical synthesis , Sulfones/chemistry
9.
J Med Chem ; 62(11): 5628-5637, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31091098

ABSTRACT

The effects of the CF2H moiety on H-bond (HB) acidity and lipophilicity of various compounds, when attached directly to an aromatic ring or to other functions like alkyls, ethers/thioethers, or electron-withdrawing groups, are discussed. It was found that the CF2H group acts as a HB donor with a strong dependence on the attached functional group ( A = 0.035-0.165). Regarding lipophilicity, the CF2H group may act as a more lipophilic bioisostere of OH but as a similar or less lipophilic bioisostere of SH and CH3, respectively, when attached to Ar or alkyl. In addition, the lipophilicity of ethers, sulfoxides, and sulfones is dramatically increased upon CH3/CF2H exchange at the α position. Interestingly, this exchange significantly affects not only the polarity and the volume of the solutes but also their HB-accepting ability, the main factors influencing log Poct. Accordingly, this study may be helpful in the rational design of drugs containing this moiety.


Subject(s)
Fluorocarbons/chemistry , Hydrophobic and Hydrophilic Interactions , Hydrogen Bonding , Models, Molecular , Molecular Conformation
10.
J Med Chem ; 60(2): 797-804, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28051859

ABSTRACT

There is a growing interest in organic compounds containing the difluoromethyl group, as it is considered a lipophilic hydrogen bond donor that may act as a bioisostere of hydroxyl, thiol, or amine groups. A series of difluoromethyl anisoles and thioanisoles was prepared and their druglike properties, hydrogen bonding, and lipophilicity were studied. The hydrogen bond acidity parameters A (0.085-0.126) were determined using Abraham's solute 1H NMR analysis. It was found that the difluoromethyl group acts as a hydrogen bond donor on a scale similar to that of thiophenol, aniline, and amine groups but not as that of hydroxyl. Although difluoromethyl is considered a lipophilicity enhancing group, the range of the experimental Δlog P(water-octanol) values (log P(XCF2H) - log P(XCH3)) spanned from -0.1 to +0.4. For both parameters, a linear correlation was found between the measured values and Hammett σ constants. These results may aid in the rational design of drugs containing the difluoromethyl moiety.


Subject(s)
Hydrocarbons, Fluorinated/chemistry , Anisoles/chemical synthesis , Anisoles/chemistry , Hydrocarbons, Fluorinated/chemical synthesis , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Lewis Acids/chemical synthesis , Lewis Acids/chemistry , Proton Magnetic Resonance Spectroscopy , Sulfides/chemical synthesis , Sulfides/chemistry
11.
J Org Chem ; 81(19): 9180-9187, 2016 10 07.
Article in English | MEDLINE | ID: mdl-27607245

ABSTRACT

A practical, convenient, and general method for the difluoromethylation of tertiary amines, using diethyl bromodifluoromethylphosphonate and fluoride, is described. This commercially available phosphonate smoothly reacts with a fluoride ion to liberate a difluorocarbene intermediate that in the presence of a proton source and a tertiary amine generates the corresponding α-difluoromethylammonium compound in good to excellent yields. Despite the involvement of a difluorocarbene intermediate, this difluoromethylation occurs almost exclusively on the nitrogen atom with diverse molecular structures, including drugs, surfactants, chiral phase transfer catalysts, polymers, ionic liquids, and other fine chemicals. A preliminary assessment of the effects that an α-difluoromethyl groupT has on hydrogen bonding and logP of quaternary ammonium salts is also described.

12.
Org Biomol Chem ; 9(24): 8445-51, 2011 Dec 21.
Article in English | MEDLINE | ID: mdl-22042427

ABSTRACT

The reactions of the chemical warfare agents (CWAs) 2,2'-dichloroethyl sulfide (HD), O-ethyl S-2-(diisopropylamino)-ethyl methylphosphonothioate (VX) and isopropyl methylphosphonofluoridate (GB) with various metal oxide-supported quaternary ammonium fluorides (QAF) and/or potassium fluoride (KF) reagents are described. These active sorbents, which were prepared by a modified procedure, include alumina, silica and titania, enriched with "available" (not bound to the surface) fluoride ions. Alumina-based fluoride reagents were found to be more active than their silica or titania counterparts. QAF/Al(2)O(3) reagents, compared to KF/Al(2)O(3), exhibit an exceptional reactivity toward HD, as demonstrated both in reaction rates and product identity. For example, with TBAF, t(1/2) is 15 min for the formation of the elimination product divinyl sulfide (DVS), while with KF, t(1/2) is 10 h for the formation of the hydrolysis product thiodiglycol (TDG). On the other hand, both sorbents reacted similarly against the nerve agents GB or VX. In order to increase the "available" fluoride content on the solid surface, the mixed active sorbent TBAF/KF/Al(2)O(3) (20/20/60) was developed. On this powder, all three CWAs were degraded instantaneously at the low loading of 1 wt% (t(1/2) < 2 min) and rapidly at the higher loadings of 5-10 wt% (t(1/2) of minutes scale). We assume that the relatively large amount of inorganic fluoride (KF) acts synergistically as a reservoir for the more reactive organic fluorides (TBAF). Moreover, the alumina surface hydroxyl groups may also operate as a water reservoir for the hydrolysis of VX or GB. Therefore, TBAF/KF/Al(2)O(3) might be considered as a promising destructive sorbent for CWAs.


Subject(s)
Aluminum Oxide/chemistry , Chemical Warfare Agents/chemistry , Fluorides/chemistry , Potassium Compounds/chemistry , Quaternary Ammonium Compounds/chemistry
13.
J Org Chem ; 74(21): 8464-7, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-19817399

ABSTRACT

The degradation of the warfare agent sulfur mustard (HD) adsorbed onto KF/Al(2)O(3) sorbents is described. These processes were explored by MAS NMR, using (13)C-labeled sulfur mustard (HD*) and LC-MS techniques. Our study on the detoxification of this blister agent showed the formation of nontoxic substitution and less-toxic elimination products (t(1/2) = 3.5-355 h). Interestingly, the reaction rates were found to be affected by MAS conditions, i.e., by a centrifugation effect. The products and the mechanisms of these processes are discussed.


Subject(s)
Aluminum Oxide/chemistry , Fluorides/chemistry , Mustard Gas/chemistry , Potassium Compounds/chemistry , Chromatography, Liquid , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization
14.
J Org Chem ; 72(18): 7014-7, 2007 Aug 31.
Article in English | MEDLINE | ID: mdl-17676903

ABSTRACT

A facile and efficient method for the cleavage of the Ar-Si bond of various aryl trimethyl silanes is described. When adsorbed on montmorillonite KSF (mont KSF), these arylsilanes readily undergo a solvent-free protodesilylation to the corresponding arenes at room temperature in excellent yields. This approach seems to be superior to the traditional mild methods (i.e., desilylation by TFA, TBAF, CsF), in terms of reaction yield, rate, and environmentally benign conditions. Some mechanistic studies using both solution and solid-state magic-angle spinning (SS MAS) (1)H NMR are also presented.


Subject(s)
Argon/chemistry , Bentonite/chemistry , Protons , Silicones/chemistry , Bentonite/chemical synthesis , Magnetic Resonance Spectroscopy , Molecular Structure , Silanes/chemistry , Solutions , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...