Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38826435

ABSTRACT

Direct measurement of neural activity in freely moving animals is essential for understanding how the brain controls and represents behaviors. Genetically encoded calcium indicators report neural activity as changes in fluorescence intensity, but brain motion confounds quantitative measurement of fluorescence. Translation, rotation, and deformation of the brain and the movements of intervening scattering or auto-fluorescent tissue all alter the amount of fluorescent light captured by a microscope. Compared to single-photon approaches, two photon microscopy is less sensitive to scattering and off-target fluorescence, but more sensitive to motion, and two photon imaging has always required anchoring the microscope to the brain. We developed a closed-loop resonant axial-scanning high-speed two photon (CRASH2p) microscope for real-time 3D motion correction in unrestrained animals, without implantation of reference markers. We complemented CRASH2p with a novel scanning strategy and a multi-stage registration pipeline. We performed volumetric ratiometrically corrected functional imaging in the CNS of freely moving Drosophila larvae and discovered previously unknown neural correlates of behavior.

2.
Elife ; 122023 07 25.
Article in English | MEDLINE | ID: mdl-37489570

ABSTRACT

Olfactory navigation is observed across species and plays a crucial role in locating resources for survival. In the laboratory, understanding the behavioral strategies and neural circuits underlying odor-taxis requires a detailed understanding of the animal's sensory environment. For small model organisms like Caenorhabditis elegans and larval Drosophila melanogaster, controlling and measuring the odor environment experienced by the animal can be challenging, especially for airborne odors, which are subject to subtle effects from airflow, temperature variation, and from the odor's adhesion, adsorption, or reemission. Here, we present a method to control and measure airborne odor concentration in an arena compatible with an agar substrate. Our method allows continuous controlling and monitoring of the odor profile while imaging animal behavior. We construct stationary chemical landscapes in an odor flow chamber through spatially patterned odorized air. The odor concentration is measured with a spatially distributed array of digital gas sensors. Careful placement of the sensors allows the odor concentration across the arena to be continuously inferred in space and monitored through time. We use this approach to measure the odor concentration that each animal experiences as it undergoes chemotaxis behavior and report chemotaxis strategies for C. elegans and D. melanogaster larvae populations as they navigate spatial odor landscapes.


Subject(s)
Drosophila melanogaster , Odorants , Animals , Caenorhabditis elegans , Smell , Chemotaxis , Behavior, Animal
3.
Opt Lett ; 46(7): 1644-1647, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33793507

ABSTRACT

Random access multiphoton microscopy using two orthogonal acousto-optic deflectors (AODs) allows sampling only particular regions of interest within a plane, greatly speeding up the sampling rate. AODs introduce spatial and temporal dispersions, which distort the point spread function and decrease the peak intensity of the pulse. Both of these effects can be compensated for with a single dispersive element placed a distance before the AODs. An additional acousto-optic modulator, a custom cut prism, and a standard prism used with additional cylindrical optics have been demonstrated. All of these introduce additional cost or complexity and require an extended path length to achieve the needed negative group delay dispersion (GDD). By introducing a telescope between a transmission grating and the AODs, we correct for spatial and temporal dispersions in a compact design using only off-the-shelf components, and we show that the GDD can be tuned by translation of the telescope without adjustment of any other elements.

SELECTION OF CITATIONS
SEARCH DETAIL
...