Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 24(13): 12185-12194, 2017 May.
Article in English | MEDLINE | ID: mdl-28353101

ABSTRACT

Studies have revealed that the rhizofiltration is a feasible plant-based technology for aquatic metal/metalloid removal. However, the performance of aquatic U retention via rhizofiltration has not been fully revealed yet. In this study, a field investigation was conducted in a Phragmites australis Trin ex Steud. dominated wetland to estimate the efficiency of Fe plaque (IP)-assisted U rhizofiltration, with redox-state gradient (-179 to 220 mV) and low aquatic U level (66.7 to 92.0 µg l-1). The U concentrations were determined in soil, root, and aboveground biomass of P. australis. The IP on root surface was extracted via DCB extraction procedure. The bio-concentration factor (BCF) was applied to evaluate the aquatic U transfer capacity from root to above ground biomass of P. australis. The result suggested that root of P. australis was highly effective for aquatic U uptake via rhizofiltration (BCF 1025 to 1556). It also benefited the real U accumulation in aboveground biomass of P. australis (up to 0.4 mg m-2) and related plant-water-soil U recycling. The IP and associated microbial community in rhizosphere was effective mediator for aquatic U retention on root surface (BCF 1162 to 847). The IP-assisted aquatic U rhizofiltration was significantly promoted in relatively reductive environment. It was benefited by the enhanced root uptake of Fe due to lower oxidizers (e.g., DO and NO3-) availability. On the other hand, the competitive adsorption effect from co-existing IP-affinitive elements (e.g., As) also possibly impaired the real capacity of IP-assisted aquatic U rhizofiltration via P. australis.


Subject(s)
Uranium , Wetlands , Poaceae , Rhizosphere , Soil
2.
Ecotoxicol Environ Saf ; 113: 454-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25553417

ABSTRACT

The increasing cultivation of genetically modified corn plants (Zea mays) during the last decades is suggested as a potential risk to the environment. One of these genetically modified variety expressed the insecticidal Cry1Ab protein originating from Bacillus thuringiensis (Bt), resulting in resistance against Ostrinia nubilalis, the European corn borer. Transgenic litter material is extensively studied regarding the decomposition in soils. However, only a few field studies analyzed the fate of the Cry1Ab protein and the impact of green and senescent leaf litter from corn on the decomposition rate and related ecosystem functions in aquatic environments. Consequently, a microbial litter decomposition experiment was conducted under controlled semi-natural conditions in batch culture using two maize varieties: one variety with Cry1Ab and another one with the appertaining Iso-line as control treatment. The results showed no significant differences between the treatment with Cry1Ab and the Iso-line regarding loss of total mass in dry weight of 43% for Iso-line and 45% for Bt-corn litter, lignin content increased to 137.5% (Iso-line) and 115.7% (Bt-corn), and phenol loss decreased by 53.6% (Iso-line), 62.2% (Bt-corn) during three weeks of the experiment. At the end of the experiment Cry1Ab protein was still detected with 6% of the initial concentration. A slightly but significant lower cellulose content was found for the Cry1Ab treatment compared to the Iso-line litter at the end of the experiment. The significant higher total protein (25%) and nitrogen (25%) content in Bt corn, most likely due to the additionally expression of the transgenic protein, may increase the microbial cellulose degradation and decrease microbial lignin degradation. In conclusion a relevant year by year input of protein and therefore nitrogen rich Bt corn litter into aquatic environments may affect the balanced nutrient turnover in aquatic ecosystems.


Subject(s)
Bacterial Proteins/metabolism , Ecosystem , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Plants, Genetically Modified/metabolism , Water Pollutants, Chemical/metabolism , Zea mays/metabolism , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Biodegradation, Environmental , Insecticides/metabolism , Lepidoptera , Phenols/metabolism , Plant Leaves/metabolism
3.
Arch Environ Contam Toxicol ; 68(2): 317-22, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25547685

ABSTRACT

Uranium mining may pose a large threat for freshwater ecosystems, caused by elevated concentrations of metals/radionuclides in drainage water. Important pollutants of such waters are uranium (U) and radium (Ra), because of their impact due to both radio- as well as chemo-toxicity. Despite the comprehensive knowledge about specific element speciation as well as fixation processes, less is known about the retention of U and Ra at a higher level of complexity (within allochthonous ecosystems as predominant for low order streams). Consequently, we investigated the distribution and retention potential of allochthonous ecosystems regarding U and Ra as well as changing U/Ra ratios. We found U predominantly transported over long distances, whereas Ra mainly precipitates immediately after reaching the surface, i.e. in the spring area. Although high U accumulation in organic rich sediments is found, still high transport rates are detected. Low overall fixation of U within the allochthonously dominated wetland results in an U transport over long distances. Consequently, large areas are affected by U mining activities and its post-mining impact, with U being more relevant compared to Ra.


Subject(s)
Mining , Radium/analysis , Uranium/analysis , Water Pollutants, Radioactive/analysis , Wetlands , Radiation Monitoring
4.
Plant Biol (Stuttg) ; 14(2): 392-6, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22136652

ABSTRACT

Silicon is a non-essential element for plant growth. Nevertheless, it affects plant stress resistance and in some plants, such as grasses, it may substitute carbon (C) compounds in cell walls, thereby influencing C allocation patterns and biomass production. How variation in silicon supply over a narrow range affects nitrogen (N) and phosphorus (P) uptake by plants has also been investigated in some detail. However, little is known about effects on the stoichiometric relationships between C, N and P when silicon supply varies over a broader range. Here, we assessed the effect of silicon on aboveground biomass production and C:N:P stoichiometry of common reed, Phragmites australis, in a pot experiment in which three widely differing levels of silicon were supplied. Scanning electron microscopy (SEM) showed that elevated silicon supply promoted silica deposition in the epidermis of Phragmites leaves. This resulted in altered N:P ratios, whereas C:N ratios changed only slightly. Plant growth was slightly (but not significantly) enhanced at intermediate silicon supply levels but significantly decreased at high levels. These findings point to the potential of silicon to impact plant growth and elemental stoichiometry and, by extension, to affect biogeochemical cycles in ecosystems dominated by Phragmites and other grasses and sedges.


Subject(s)
Carbon/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Poaceae/metabolism , Silicon/pharmacology , Biomass , Microscopy, Electron, Scanning , Plant Components, Aerial/chemistry , Plant Components, Aerial/drug effects , Plant Components, Aerial/growth & development , Plant Components, Aerial/metabolism , Plant Epidermis/chemistry , Plant Epidermis/drug effects , Plant Epidermis/growth & development , Plant Epidermis/metabolism , Plant Leaves/chemistry , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Poaceae/chemistry , Poaceae/drug effects , Poaceae/growth & development
5.
Environ Pollut ; 158(7): 2454-8, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20462679

ABSTRACT

Organic sediments are a main sink for metal pollutants in aquatic systems. However, factors that make sediments a sink of metals and metalloids are still not clear. Consequently, we investigate the role of invertebrate shredders (Gammarus pulex L.) on quality of metal and arsenic fixation into organic partitions of sediment in the course of litter decay with laboratory microcosm experiments. During the decomposition of leaf litter, G. pulex significantly facilitated the development of small particles of organic matter. The capacity of metal fixation was significantly higher in smaller particles than leaf litter and litter residuals. Thus, G. pulex enhanced metal fixation into the organic partition of sediments by virtue of increasing the amount smaller particles in the aquatic system. Furthermore, invertebrates have a significant effect on formation of dissolved organic matter and remobilization of cobalt, molybdenum and cesium, but no significant effect on remobilization of all other measured elements.


Subject(s)
Amphipoda/metabolism , Arsenic/metabolism , Metals, Heavy/metabolism , Water Pollutants, Chemical/metabolism , Animals , Carbon/metabolism , Molybdenum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...