Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Comput Aided Mol Des ; 37(12): 735-754, 2023 12.
Article in English | MEDLINE | ID: mdl-37804393

ABSTRACT

QSAR models capable of predicting biological, toxicity, and pharmacokinetic properties were widely used to search lead bioactive molecules in chemical databases. The dataset's preparation to build these models has a strong influence on the quality of the generated models, and sampling requires that the original dataset be divided into training (for model training) and test (for statistical evaluation) sets. This sampling can be done randomly or rationally, but the rational division is superior. In this paper, we present MASSA, a Python tool that can be used to automatically sample datasets by exploring the biological, physicochemical, and structural spaces of molecules using PCA, HCA, and K-modes. The proposed algorithm is very useful when the variables used for QSAR are not available or to construct multiple QSAR models with the same training and test sets, producing models with lower variability and better values for validation metrics. These results were obtained even when the descriptors used in the QSAR/QSPR were different from those used in the separation of training and test sets, indicating that this tool can be used to build models for more than one QSAR/QSPR technique. Finally, this tool also generates useful graphical representations that can provide insights into the data.


Subject(s)
Algorithms , Quantitative Structure-Activity Relationship , Databases, Chemical , Benchmarking
2.
Expert Opin Drug Discov ; 16(9): 961-975, 2021 09.
Article in English | MEDLINE | ID: mdl-33957833

ABSTRACT

Introduction: Drug design and discovery of new antivirals will always be extremely important in medicinal chemistry, taking into account known and new viral diseases that are yet to come. Although machine learning (ML) have shown to improve predictions on the biological potential of chemicals and accelerate the discovery of drugs over the past decade, new methods and their combinations have improved their performance and established promising perspectives regarding ML in the search for new antivirals.Areas covered: The authors consider some interesting areas that deal with different ML techniques applied to antivirals. Recent innovative studies on ML and antivirals were selected and analyzed in detail. Also, the authors provide a brief look at the past to the present to detect advances and bottlenecks in the area.Expert opinion: From classical ML techniques, it was possible to boost the searches for antivirals. However, from the emergence of new algorithms and the improvement in old approaches, promising results will be achieved every day, as we have observed in the case of SARS-CoV-2. Recent experience has shown that it is possible to use ML to discover new antiviral candidates from virtual screening and drug repurposing.


Subject(s)
Antiviral Agents/pharmacology , Drug Design , Machine Learning/trends , Algorithms , Animals , Drug Discovery/methods , Drug Discovery/trends , Drug Repositioning , Humans , Virus Diseases/drug therapy , Virus Diseases/virology , COVID-19 Drug Treatment
3.
Mol Biosyst ; 11(11): 3188-93, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26399297

ABSTRACT

Dipeptidyl peptidase-4 (DPP-4) is an important biological target related to the treatment of diabetes as DPP-4 inhibitors can lead to an increase in the insulin levels and a prolonged activity of glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP), being effective in glycemic control. Thus, this study analyses the main molecular interactions between DPP-4 and a series of bioactive ligands. The methodology used here employed molecular modeling methods, such as HQSAR (Hologram Quantitative Structure-Activity) analyses and molecular docking, with the aim of understanding the main structural features of the compound series that are essential for the biological activity. Analyses of the main interactions in the active site of DPP-4, in particular, the contribution of the hydroxyl coordination between Tyr547 and Ser630 by the water molecule, which is described in the literature as important for the coordinated interactions in the active site, were performed. Significant correlation coefficients of the best 2D model (r(2) = 0.942 and q(2) = 0.836) were obtained, indicating the predictive power of this model for untested compounds. Therefore, the final model constructed in this study, along with the information from the contribution maps, could be useful in the design of novel DPP-4 ligands with improved activity.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Molecular Docking Simulation , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Inhibitory Concentration 50 , Models, Molecular , Quantitative Structure-Activity Relationship
4.
Expert Opin Drug Metab Toxicol ; 11(2): 259-71, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25440524

ABSTRACT

INTRODUCTION: Pharmacokinetics involves the study of absorption, distribution, metabolism, excretion and toxicity of xenobiotics (ADME-Tox). In this sense, the ADME-Tox profile of a bioactive compound can impact its efficacy and safety. Moreover, efficacy and safety were considered some of the major causes of clinical failures in the development of new chemical entities. In this context, machine learning (ML) techniques have been often used in ADME-Tox studies due to the existence of compounds with known pharmacokinetic properties available for generating predictive models. AREAS COVERED: This review examines the growth in the use of some ML techniques in ADME-Tox studies, in particular supervised and unsupervised techniques. Also, some critical points (e.g., size of the data set and type of output variable) must be considered during the generation of models that relate ADME-Tox properties and biological activity. EXPERT OPINION: ML techniques have been successfully employed in pharmacokinetic studies, helping the complex process of designing new drug candidates from the use of reliable ML models. An application of this procedure would be the prediction of ADME-Tox properties from studies of quantitative structure-activity relationships or the discovery of new compounds from a virtual screening using filters based on results obtained from ML techniques.


Subject(s)
Artificial Intelligence , Drug Design , Xenobiotics/pharmacokinetics , Humans , Models, Biological , Quantitative Structure-Activity Relationship , Xenobiotics/chemistry , Xenobiotics/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...