Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Clin Oncol ; 40(18): 2036-2047, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35263119

ABSTRACT

PURPOSE: Tubo-ovarian cancer (TOC) is a sentinel cancer for BRCA1 and BRCA2 pathogenic variants (PVs). Identification of a PV in the first member of a family at increased genetic risk (the proband) provides opportunities for cancer prevention in other at-risk family members. Although Australian testing rates are now high, PVs in patients with TOC whose diagnosis predated revised testing guidelines might have been missed. We assessed the feasibility of detecting PVs in this population to enable genetic risk reduction in relatives. PATIENTS AND METHODS: In this pilot study, deceased probands were ascertained from research cohort studies, identification by a relative, and gynecologic oncology clinics. DNA was extracted from archival tissue or stored blood for panel sequencing of 10 risk-associated genes. Testing of deceased probands ascertained through clinic records was performed with a consent waiver. RESULTS: We identified 85 PVs in 84 of 787 (11%) probands. Familial contacts of 39 of 60 (65%) deceased probands with an identified recipient (60 of 84; 71%) have received a written notification of results, with follow-up verbal contact made in 85% (33 of 39). A minority of families (n = 4) were already aware of the PV. For many (29 of 33; 88%), the genetic result provided new information and referral to a genetic service was accepted in most cases (66%; 19 of 29). Those who declined referral (4 of 29) were all male next of kin whose family member had died more than 10 years before. CONCLUSION: We overcame ethical and logistic challenges to demonstrate that retrospective genetic testing to identify PVs in previously untested deceased probands with TOC is feasible. Understanding reasons for a family member's decision to accept or decline a referral will be important for guiding future TRACEBACK projects.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , Australia , Breast Neoplasms/genetics , Carcinoma, Ovarian Epithelial/genetics , Family , Female , Genetic Predisposition to Disease , Genetic Testing/methods , Humans , Male , Ovarian Neoplasms/genetics , Ovarian Neoplasms/prevention & control , Pilot Projects , Retrospective Studies
2.
PLoS One ; 9(12): e101488, 2014.
Article in English | MEDLINE | ID: mdl-25526632

ABSTRACT

OBJECTIVE: Genome wide association studies (GWAs) of breast cancer mortality have identified few potential associations. The concordance between these studies is unclear. In this study, we used a meta-analysis of two prognostic GWAs and a replication cohort to identify the strongest associations and to evaluate the loci suggested in previous studies. We attempt to identify those SNPs which could impact overall survival irrespective of the age of onset. METHODS: To facilitate the meta-analysis and to refine the association signals, SNPs were imputed using data from the 1000 genomes project. Cox-proportional hazard models were used to estimate hazard ratios (HR) in 536 patients from the POSH cohort (Prospective study of Outcomes in Sporadic versus Hereditary breast cancer) and 805 patients from the HEBCS cohort (Helsinki Breast Cancer Study). These hazard ratios were combined using a Mantel-Haenszel fixed effects meta-analysis and a p-value threshold of 5×10(-8) was used to determine significance. Replication was performed in 1523 additional patients from the POSH study. RESULTS: Although no SNPs achieved genome wide significance, three SNPs have significant association in the replication cohort and combined p-values less than 5.6×10(-6). These SNPs are; rs421379 which is 556 kb upstream of ARRDC3 (HR = 1.49, 95% confidence interval (CI) = 1.27-1.75, P = 1.1×10(-6)), rs12358475 which is between ECHDC3 and PROSER2 (HR = 0.75, CI = 0.67-0.85, P = 1.8×10(-6)), and rs1728400 which is between LINC00917 and FOXF1. CONCLUSIONS: In a genome wide meta-analysis of two independent cohorts from UK and Finland, we identified potential associations at three distinct loci. Phenotypic heterogeneity and relatively small sample sizes may explain the lack of genome wide significant findings. However, the replication at three SNPs in the validation cohort shows promise for future studies in larger cohorts. We did not find strong evidence for concordance between the few associations highlighted by previous GWAs of breast cancer survival and this study.


Subject(s)
Breast Neoplasms/genetics , Polymorphism, Single Nucleotide , Adult , Aged , Arrestins/genetics , Breast Neoplasms/diagnosis , Case-Control Studies , Female , Forkhead Transcription Factors/genetics , Genetic Loci , Genome-Wide Association Study , Humans , Middle Aged , Prognosis
3.
Carcinogenesis ; 35(5): 1012-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24325915

ABSTRACT

Triple-negative (TN) breast cancer is an aggressive subtype of breast cancer associated with a unique set of epidemiologic and genetic risk factors. We conducted a two-stage genome-wide association study of TN breast cancer (stage 1: 1529 TN cases, 3399 controls; stage 2: 2148 cases, 1309 controls) to identify loci that influence TN breast cancer risk. Variants in the 19p13.1 and PTHLH loci showed genome-wide significant associations (P < 5 × 10(-) (8)) in stage 1 and 2 combined. Results also suggested a substantial enrichment of significantly associated variants among the single nucleotide polymorphisms (SNPs) analyzed in stage 2. Variants from 25 of 74 known breast cancer susceptibility loci were also associated with risk of TN breast cancer (P < 0.05). Associations with TN breast cancer were confirmed for 10 loci (LGR6, MDM4, CASP8, 2q35, 2p24.1, TERT-rs10069690, ESR1, TOX3, 19p13.1, RALY), and we identified associations with TN breast cancer for 15 additional breast cancer loci (P < 0.05: PEX14, 2q24.1, 2q31.1, ADAM29, EBF1, TCF7L2, 11q13.1, 11q24.3, 12p13.1, PTHLH, NTN4, 12q24, BRCA2, RAD51L1-rs2588809, MKL1). Further, two SNPs independent of previously reported signals in ESR1 [rs12525163 odds ratio (OR) = 1.15, P = 4.9 × 10(-) (4)] and 19p13.1 (rs1864112 OR = 0.84, P = 1.8 × 10(-) (9)) were associated with TN breast cancer. A polygenic risk score (PRS) for TN breast cancer based on known breast cancer risk variants showed a 4-fold difference in risk between the highest and lowest PRS quintiles (OR = 4.03, 95% confidence interval 3.46-4.70, P = 4.8 × 10(-) (69)). This translates to an absolute risk for TN breast cancer ranging from 0.8% to 3.4%, suggesting that genetic variation may be used for TN breast cancer risk prediction.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Quantitative Trait Loci , Triple Negative Breast Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Chromosomes, Human, Pair 19 , Estrogen Receptor alpha/genetics , Female , Humans , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
4.
Hum Mol Genet ; 21(24): 5373-84, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-22976474

ABSTRACT

Genome-wide association studies (GWAS) of breast cancer defined by hormone receptor status have revealed loci contributing to susceptibility of estrogen receptor (ER)-negative subtypes. To identify additional genetic variants for ER-negative breast cancer, we conducted the largest meta-analysis of ER-negative disease to date, comprising 4754 ER-negative cases and 31 663 controls from three GWAS: NCI Breast and Prostate Cancer Cohort Consortium (BPC3) (2188 ER-negative cases; 25 519 controls of European ancestry), Triple Negative Breast Cancer Consortium (TNBCC) (1562 triple negative cases; 3399 controls of European ancestry) and African American Breast Cancer Consortium (AABC) (1004 ER-negative cases; 2745 controls). We performed in silico replication of 86 SNPs at P ≤ 1 × 10(-5) in an additional 11 209 breast cancer cases (946 with ER-negative disease) and 16 057 controls of Japanese, Latino and European ancestry. We identified two novel loci for breast cancer at 20q11 and 6q14. SNP rs2284378 at 20q11 was associated with ER-negative breast cancer (combined two-stage OR = 1.16; P = 1.1 × 10(-8)) but showed a weaker association with overall breast cancer (OR = 1.08, P = 1.3 × 10(-6)) based on 17 869 cases and 43 745 controls and no association with ER-positive disease (OR = 1.01, P = 0.67) based on 9965 cases and 22 902 controls. Similarly, rs17530068 at 6q14 was associated with breast cancer (OR = 1.12; P = 1.1 × 10(-9)), and with both ER-positive (OR = 1.09; P = 1.5 × 10(-5)) and ER-negative (OR = 1.16, P = 2.5 × 10(-7)) disease. We also confirmed three known loci associated with ER-negative (19p13) and both ER-negative and ER-positive breast cancer (6q25 and 12p11). Our results highlight the value of large-scale collaborative studies to identify novel breast cancer risk loci.


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Female , Humans , Polymorphism, Single Nucleotide/genetics , Receptors, Estrogen/genetics
5.
Nat Genet ; 43(12): 1210-4, 2011 Oct 30.
Article in English | MEDLINE | ID: mdl-22037553

ABSTRACT

Estrogen receptor (ER)-negative breast cancer shows a higher incidence in women of African ancestry compared to women of European ancestry. In search of common risk alleles for ER-negative breast cancer, we combined genome-wide association study (GWAS) data from women of African ancestry (1,004 ER-negative cases and 2,745 controls) and European ancestry (1,718 ER-negative cases and 3,670 controls), with replication testing conducted in an additional 2,292 ER-negative cases and 16,901 controls of European ancestry. We identified a common risk variant for ER-negative breast cancer at the TERT-CLPTM1L locus on chromosome 5p15 (rs10069690: per-allele odds ratio (OR) = 1.18 per allele, P = 1.0 × 10(-10)). The variant was also significantly associated with triple-negative (ER-negative, progesterone receptor (PR)-negative and human epidermal growth factor-2 (HER2)-negative) breast cancer (OR = 1.25, P = 1.1 × 10(-9)), particularly in younger women (<50 years of age) (OR = 1.48, P = 1.9 × 10(-9)). Our results identify a genetic locus associated with estrogen receptor negative breast cancer subtypes in multiple populations.


Subject(s)
Breast Neoplasms/genetics , Genetic Loci , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Receptors, Estrogen/metabolism , Telomerase/genetics , Black or African American , Aged , Breast Neoplasms/ethnology , Breast Neoplasms/metabolism , Case-Control Studies , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Middle Aged , Polymorphism, Single Nucleotide , Receptors, Estrogen/genetics , White People
6.
Cancer Res ; 71(19): 6240-9, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21844186

ABSTRACT

Triple-negative breast cancers are an aggressive subtype of breast cancer with poor survival, but there remains little known about the etiologic factors that promote its initiation and development. Commonly inherited breast cancer risk factors identified through genome-wide association studies display heterogeneity of effect among breast cancer subtypes as defined by the status of estrogen and progesterone receptors. In the Triple Negative Breast Cancer Consortium (TNBCC), 22 common breast cancer susceptibility variants were investigated in 2,980 Caucasian women with triple-negative breast cancer and 4,978 healthy controls. We identified six single-nucleotide polymorphisms, including rs2046210 (ESR1), rs12662670 (ESR1), rs3803662 (TOX3), rs999737 (RAD51L1), rs8170 (19p13.1), and rs8100241 (19p13.1), significantly associated with the risk of triple-negative breast cancer. Together, our results provide convincing evidence of genetic susceptibility for triple-negative breast cancer.


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Receptors, Estrogen/genetics , Receptors, Progesterone/genetics , Adult , Aged , Breast Neoplasms/etiology , Breast Neoplasms/metabolism , Case-Control Studies , Chromosomes, Human, Pair 19/genetics , Female , Humans , Middle Aged , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Risk , White People , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...