Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786830

ABSTRACT

Atomic force microscopy (AFM) is a technique that relies on detecting forces at the nanonewton scale. It involves using a cantilever with a tiny tip at one end. This tip interacts with the short- and long-range forces of material surfaces. These cantilevers are typically manufactured with Si or Si3N4 and synthesized using a lithography technique, which implies a high cost. On the other hand, through simple chemical methods, it is possible to synthesize a magneto-dielectric composite made up of artificial SiO2 opals infiltrated with superparamagnetic nanoparticles of Fe3O4. From these materials, it is possible to obtain tipless cantilevers that can be used in AFM analysis. Tipless cantilevers are an alternative tool in nanoscale exploration, offering a versatile approach to surface analysis. Unlike traditional AFM probes, tipless versions eliminate the challenges associated with tip wear, ensuring prolonged stability during measurements. This makes tipless AFM particularly valuable for imaging delicate or soft samples, as it prevents sample damage and provides precise measurements of topography and mechanical and electromechanical properties. This study presents the results of the characterization of known surfaces using magneto-dielectric cantilevers and commercial cantilevers based on Si. The characterization will be carried out through contact and non-contact topography measurements.

2.
Anal Chem ; 96(15): 5790-5797, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38452224

ABSTRACT

Nanoplastic particles are emerging as an important class of environmental pollutants in the atmosphere that have adverse effects on our ecosystems and human health. While many methods have been developed to quantitatively detect nanoplastics; however, sensitive detection at low concentrations in a complex environment remains elusive. Herein, we demonstrate a greener method to fabricate a surface-enhanced Raman spectroscopy (SERS) substrate consisting of self-assembled plasmonic Ag-Au bimetallic nanoparticle (NP) films for quantitative SERS detection of nanoplastics in complex media. The self-assembly of Ag-Au bimetallic NPs was achieved through thermal evaporation onto a vapor-phase compatible ionic liquid based on deep eutectic solvent over the growth substrate. The finite-difference time-domain simulation revealed that the localized field enhancement is strong in the gaps, which generate uniform SERS "hotspots" in the obtained substrate. Benefiting from highly accessible SERS "hotspots" at the gaps, the SERS substrate exhibits excellent sensitivity for detecting crystal violet with a limit of detection (LOD) as low as 10-14 M and excellent reproducibility (RSD of 5.8%). The SERS substrate is capable of detecting PET nanoplastics with LOD as low as 1 µg/mL and about 100 µg/mL in real samples such as tap water, lake water, diluted milk, and wine. Moreover, we also validated the feasibility of the designed SERS substrate for the practical detection of PET nanoplastics collected from commercial drinking water bottles, and it showed great potential applications for sensitive detection in actual environments.

3.
Beilstein J Nanotechnol ; 11: 703-716, 2020.
Article in English | MEDLINE | ID: mdl-32461872

ABSTRACT

In this work, a high-resolution atomic force acoustic microscopy imaging technique is developed in order to obtain the local indentation modulus at the nanoscale level. The technique uses a model that gives a qualitative relationship between a set of contact resonance frequencies and the indentation modulus. It is based on white-noise excitation of the tip-sample interaction and uses system theory for the extraction of the resonance modes. During conventional scanning, for each pixel, the tip-sample interaction is excited with a white-noise signal. Then, a fast Fourier transform is applied to the deflection signal that comes from the photodiodes of the atomic force microscopy (AFM) equipment. This approach allows for the measurement of several vibrational modes in a single step with high frequency resolution, with less computational cost and at a faster speed than other similar techniques. This technique is referred to as stochastic atomic force acoustic microscopy (S-AFAM), and the frequency shifts of the free resonance frequencies of an AFM cantilever are used to determine the mechanical properties of a material. S-AFAM is implemented and compared with a conventional technique (resonance tracking-atomic force acoustic microscopy, RT-AFAM). A sample of a graphite film on a glass substrate is analyzed. S-AFAM can be implemented in any AFM system due to its reduced instrumentation requirements compared to conventional techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...