Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 12(5)2021 May 08.
Article in English | MEDLINE | ID: mdl-34066789

ABSTRACT

Bumble bees are among the most effective pollinators in orchards during the blooming period, yet they are often threatened by the high levels of pesticide use in apple production. This study aimed to evaluate the influence of landscape enhancements (e.g., hedgerows, flower strips) on bumble bee queens in apple orchards. Bumble bee queens from 12 orchards in southern Québec (Canada) were marked, released, and recaptured in the springs and falls of 2017 to 2019. Half of the 12 orchards had landscape enhancements. Apples were harvested in 2018 and 2019 to compare their quality (weight, diameter, sugar level, and seed number) in sites with and without landscape enhancements. Species richness, as well as the occurrence of three species out of eight, was higher in orchards with landscape enhancements than in orchards without such structures. The occurrence of Bombus ternarius was lower in orchards with high levels of pesticide use. Apples had fewer seeds when collected in orchards with landscape enhancements and were heavier in orchards that used more pesticides. Our work provides additional evidence that landscape enhancements improve bumble bee presence in apple orchards and should therefore be considered as a means to enhance pollination within farms.

2.
PLoS One ; 15(6): e0234498, 2020.
Article in English | MEDLINE | ID: mdl-32584843

ABSTRACT

Bumble bee communities are strongly disrupted worldwide through the population decline of many species; a phenomenon that has been generally attributed to landscape modification, pesticide use, pathogens, and climate change. The mechanisms by which these causes act on bumble bee colonies are, however, likely to be complex and to involve many levels of organization spanning from the community down to the least understood individual level. Here, we assessed how the morphology, weight and foraging behavior of individual workers are affected by their surrounding landscape. We hypothesized that colonies established in landscapes showing high cover of intensive crops and low cover of flowering crops, as well as low amounts of local floral resources, would produce smaller workers, which would perform fewer foraging trips and collect pollen loads less constant in species composition. We tested these predictions with 80 colonies of commercially reared Bombus impatiens Cresson placed in 20 landscapes spanning a gradient of agricultural intensification in southern Québec, Canada. We estimated weekly rate at which workers entered and exited colonies and captured eight workers per colony over a period of 14 weeks during the spring and summer of 2016. Captured workers had their wing, thorax, head, tibia, and dry weight measured, as well as their pollen load extracted and identified to the lowest possible taxonomic level. We did not detect any effect of landscape habitat composition on worker morphology or body weight, but found that foraging activity decreased with intensive crops. Moreover, higher diversity of local floral resources led to lower pollen constancy in intensively cultivated landscapes. Finally, we found a negative correlation between the size of workers and the diversity of their pollen load. Our results provide additional evidence that conservation actions regarding pollinators in arable landscapes should be made at the landscape rather than at the farm level.


Subject(s)
Bees/physiology , Ecosystem , Pollen/physiology , Pollination/physiology , Animals , Canada , Crops, Agricultural , Quebec , Seasons
3.
J Econ Entomol ; 110(4): 1424-1432, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28854658

ABSTRACT

The conservation of bee populations for pollination in agricultural landscapes has attracted a lot of recent research interest, especially for crop industries undergoing expansion to meet increased production demands. In Canada, much growth has been occurring with commercial cranberry production, a field crop which is largely dependent on bee pollination. Wild bee pollinators could be negatively impacted by losses of natural habitat surrounding cranberry fields to accommodate increased production, but growers have little insight on how to manage their lands to maximize the presence of wild bees. Here, we described a 2-yr study where bee diversity and species composition were investigated to better understand the dynamic between natural habitat and cranberry fields. Bees were sampled using pan-traps and hand netting both within cranberry fields and in one of the three adjacent natural habitat types once a week during the crop flowering period. We found that bee community composition among cranberry fields did not differ based on the respective adjacent habitat type, but fields bordered by meadows were marginally less diverse than fields bordered by forest. As one would expect, field and natural habitat communities differed in terms of species composition and species richness. There was no evidence that one type of natural habitat was more favorable for the bees than another. Future agrobiodiversity studies should simultaneously examine bee diversity comprised in both crop fields and adjacent natural environments to better understand the species dynamics essential to the preservation of pollination services.


Subject(s)
Animal Distribution , Bees/physiology , Biodiversity , Crops, Agricultural , Ecosystem , Vaccinium macrocarpon , Animals , Crops, Agricultural/growth & development , Quebec , Vaccinium macrocarpon/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...