Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(29): eadg0686, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37467333

ABSTRACT

The gelatinases, matrix metalloproteinase 2 (MMP-2) and MMP-9, are key for leukocyte penetration of the brain parenchymal border in neuroinflammation and the functional integrity of this barrier; however, it is unclear which MMP substrates are involved. Using a tailored, sensitive, label-free mass spectrometry-based secretome approach, not previously applied to nonimmune cells, we identified 119 MMP-9 and 21 MMP-2 potential substrates at the cell surface of primary astrocytes, including known substrates (ß-dystroglycan) and a broad spectrum of previously unknown MMP-dependent events involved in cell-cell and cell-matrix interactions. Using neuroinflammation as a model of assessing compromised astroglial barrier function, a selection of the potential MMP substrates were confirmed in vivo and verified in human samples, including vascular cell adhesion molecule-1 and neuronal cell adhesion molecule. We provide a unique resource of potential MMP-2/MMP-9 substrates specific for the astroglia barrier. Our data support a role for the gelatinases in the formation and maintenance of this barrier but also in astrocyte-neuron interactions.


Subject(s)
Gelatinases , Matrix Metalloproteinase 2 , Humans , Gelatinases/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Blood-Brain Barrier/metabolism , Astrocytes/metabolism , Neuroinflammatory Diseases
2.
Bioorg Med Chem ; 90: 117350, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37270903

ABSTRACT

To develop matrix metalloproteinase inhibitors (MMPIs) for both therapy and medicinal imaging by fluorescence-based techniques or positron-emission tomography (PET), a small library of eighteen N-substituted N-arylsulfonamido d-valines were synthesized and their potency to inhibit two gelatinases (MMP-2, and MMP-9), two collagenases (MMP-8, and MMP-13) and macrophage elastase (MMP-12) was determined in a Structure-Activity-Relation study with ({4-[3-(5-methylthiophen-2-yl)-1,2,4-oxadiazol-5-yl]phenyl}sulfonyl)-d-valine (1) as a lead. All compounds were shown to be more potent MMP-2/-9 inhibitors (nanomolar range) compared to other tested MMPs. This is a remarkable result considering that a carboxylic acid group is the zinc binding moiety. The compound with a terminal fluoropropyltriazole group at the furan ring (P1' substituent) was only four times less potent in inhibiting MMP-2 activity than the lead compound 1, making this compound a promising probe for PET application (after using a prosthetic group approach to introduce fluorine-18). Compounds with a TEG spacer and a terminal azide or even a fluorescein moiety at the sulfonylamide N atom (P2' substituent) were almost as active as the lead structure 1, making the latter derivative a suitable fluorescence imaging tool.


Subject(s)
Matrix Metalloproteinase 2 , Matrix Metalloproteinase Inhibitors , Matrix Metalloproteinase Inhibitors/pharmacology , Structure-Activity Relationship , Valine , Carboxylic Acids
3.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34479995

ABSTRACT

Ectopic lymphoid tissue containing B cells forms in the meninges at late stages of human multiple sclerosis (MS) and when neuroinflammation is induced by interleukin (IL)-17 producing T helper (Th17) cells in rodents. B cell differentiation and the subsequent release of class-switched immunoglobulins have been speculated to occur in the meninges, but the exact cellular composition and underlying mechanisms of meningeal-dominated inflammation remain unknown. Here, we performed in-depth characterization of meningeal versus parenchymal Th17-induced rodent neuroinflammation. The most pronounced cellular and transcriptional differences between these compartments was the localization of B cells exhibiting a follicular phenotype exclusively to the meninges. Correspondingly, meningeal but not parenchymal Th17 cells acquired a B cell-supporting phenotype and resided in close contact with B cells. This preferential B cell tropism for the meninges and the formation of meningeal ectopic lymphoid tissue was partially dependent on the expression of the transcription factor Bcl6 in Th17 cells that is required in other T cell lineages to induce isotype class switching in B cells. A function of Bcl6 in Th17 cells was only detected in vivo and was reflected by the induction of B cell-supporting cytokines, the appearance of follicular B cells in the meninges, and of immunoglobulin class switching in the cerebrospinal fluid. We thus identify the induction of a B cell-supporting meningeal microenvironment by Bcl6 in Th17 cells as a mechanism controlling compartment specificity in neuroinflammation.


Subject(s)
Neuroinflammatory Diseases/metabolism , Proto-Oncogene Proteins c-bcl-6/metabolism , Th17 Cells/metabolism , Animals , B-Lymphocytes/immunology , Cell Communication , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Germinal Center/immunology , Inflammation/metabolism , Lymphocyte Activation , Male , Meninges/immunology , Meninges/metabolism , Mice , Mice, Inbred C57BL , Multiple Sclerosis/metabolism , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/physiopathology , Parenchymal Tissue/immunology , Parenchymal Tissue/metabolism , Proto-Oncogene Proteins c-bcl-6/physiology , Th17 Cells/immunology , Th17 Cells/physiology
4.
Int J Biochem Cell Biol ; 127: 105823, 2020 10.
Article in English | MEDLINE | ID: mdl-32781135

ABSTRACT

The extracellular matrix is an integral component of the vasculature, contributing to both developmental processes and structural and functional homeostasis. We describe here the types of extracellular matrices that occur in different blood vessel types, ranging from capillaries to veins, venules and arteries, and focus on the endothelial basement membranes and the laminin family of proteins. We summarize data on the molecular composition of endothelial basement membranes, the structure and in vivo expression patterns of the main endothelial laminin isoforms (laminins 411 and 511) and their, to date, deciphered functions in the vasculature. A significant portion of the review focuses on postcapillary venules and leukocyte extravasation and how the endothelial laminins affect adhesion and migration of different leukocyte types, but also how laminins affect endothelial barrier function by modulating expression and localization of endothelial cell-cell junction molecules, and how these effects differ in CNS versus non-CNS tissues. Comparisons are made to small artery dilation in response to shear flow, which has been shown to be dependent on endothelial laminins and junctional complexes. The data discussed support a central role for basement membrane laminins in different aspects of micro- and macro-vessel endothelial function, but also reveal that many open questions remain, including the contribution of perivascular cells which are either embedded or in direct contact with the endothelial cell basement membrane laminins.


Subject(s)
Basement Membrane/metabolism , Blood Vessels/metabolism , Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Laminin/metabolism , Leukocytes/metabolism , Animals , Blood Vessels/cytology , Endothelial Cells/cytology , Humans , Protein Isoforms
5.
J Exp Med ; 217(7)2020 07 06.
Article in English | MEDLINE | ID: mdl-32379272

ABSTRACT

The endothelial cell basement membrane (BM) is a barrier to migrating leukocytes and a rich source of signaling molecules that can influence extravasating cells. Using mice lacking the major endothelial BM components, laminin 411 or 511, in murine experimental autoimmune encephalomyelitis (EAE), we show here that loss of endothelial laminin 511 results in enhanced disease severity due to increased T cell infiltration and altered polarization and pathogenicity of infiltrating T cells. In vitro adhesion and migration assays reveal higher binding to laminin 511 than laminin 411 but faster migration across laminin 411. In vivo and in vitro analyses suggest that integrin α6ß1- and αvß1-mediated binding to laminin 511-high sites not only holds T cells at such sites but also limits their differentiation to pathogenic Th17 cells. This highlights the importance of the interface between the endothelial monolayer and the underlying BM for modulation of immune cell phenotype.


Subject(s)
Basement Membrane/metabolism , Brain/pathology , Endothelial Cells/metabolism , T-Lymphocytes/immunology , Animals , Basement Membrane/drug effects , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Movement/drug effects , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Endothelial Cells/drug effects , Integrin alpha6beta1/metabolism , Laminin/pharmacology , Mice , Receptors, Vitronectin/metabolism , Spinal Cord/pathology , T-Lymphocytes/drug effects , Th17 Cells/drug effects , Th17 Cells/metabolism
6.
Bioconjug Chem ; 29(11): 3715-3725, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30277751

ABSTRACT

Matrix metalloproteinases (MMPs) are emerging as pivotal fine-tuners of cell function in tissue homeostasis and in various pathologies, in particular inflammation. In vivo monitoring of the activity of specific MMPs, therefore, provides high potential for assessing disease progression and tissue function, and manipulation of MMP activity in tissues and whole organisms may further provide a mode of controlling pathological processes. We describe here the synthesis of novel fluorinated and nonfluorinated analogues of a secondary sulfonamide-based lead structure, compound 2, and test their efficacy as in vivo inhibitors and tracers of the gelatinases, MMP-2 and MMP-9. Using a murine neuroinflammatory model, we show that compound 2 is a highly effective in vivo inhibitor of both MMP-2 and MMP-9 activity with little or no adverse effects even after long-term daily oral administration. A fluorescein-labeled derivative compound 17 shows direct binding to activated gelatinases surrounding inflammatory cuffs in the neuroinflammation model and to pancreatic ß-cells in the islets of Langerhans, colocalizing with MMP-2 and MMP-9 activity as detected using in situ zymography techniques. These results demonstrate that compound 2 derivatives have potential as in vivo imaging tools and for future development for specific MMP-2 versus MMP-9 probes. Our chemical modifications mainly target the residues directed toward the S1' and S2' pockets and, thereby, provide new information on the structure-activity relationships of this inhibitor type.


Subject(s)
Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase Inhibitors/chemistry , Matrix Metalloproteinase Inhibitors/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Animals , Cell Line , Female , Halogenation , Humans , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/enzymology , Insulin-Secreting Cells/metabolism , Matrix Metalloproteinase 2/chemistry , Matrix Metalloproteinase 9/chemistry , Matrix Metalloproteinase Inhibitors/adverse effects , Matrix Metalloproteinase Inhibitors/chemical synthesis , Mice, Inbred C57BL , Molecular Docking Simulation , Structure-Activity Relationship , Sulfonamides/adverse effects , Sulfonamides/chemical synthesis
7.
Sci Transl Med ; 8(364): 364ra152, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27831901

ABSTRACT

The enzymes gelatinase A/matrix metalloproteinase-2 (MMP-2) and gelatinase B/MMP-9 are essential for induction of neuroinflammatory symptoms in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS); in the absence of these enzymes, the disease does not develop. We therefore investigated the cellular sources and relative contributions of MMP-2 and MMP-9 to disease at early stages of EAE induction. We demonstrated that MMP-9 from an immune cell source is required in EAE for initial infiltration of leukocytes into the central nervous system and that MMP-9 activity is a reliable marker of leukocyte penetration of the blood-brain barrier. We then developed a molecular imaging method to visualize MMP activity in the brain using fluorescent- and radioactive-labeled MMP inhibitors (MMPis) in EAE animals and used the radioactive MMP ligand for positron emission tomography (PET) imaging of MMP activity in patients with MS. In contrast to traditional T1-gadolinium contrast-enhanced MRI, MMPi-PET enabled tracking of MMP activity as a unique feature of early lesions and ongoing leukocyte infiltration. MMPi-PET therefore allows monitoring of the early steps of MS development and provides a sensitive, noninvasive means of following lesion formation and resolution in murine EAE and human MS.


Subject(s)
Blood-Brain Barrier/metabolism , Leukocytes/cytology , Matrix Metalloproteinases/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/physiopathology , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immune System , Inflammation , Ligands , Magnetic Resonance Imaging , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Multiple Sclerosis/enzymology , Positron-Emission Tomography , Spinal Cord/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...