Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neuroeng ; 5: 8, 2012.
Article in English | MEDLINE | ID: mdl-22586394

ABSTRACT

Composites of carbon nanotubes and poly(3,4-ethylenedioxythiophene, PEDOT) and layers of PEDOT are deposited onto microelectrodes by electropolymerization of ethylenedioxythiophene in the presence of a suspension of carbon nanotubes and polystyrene sulfonate. Analysis by FIB and SEM demonstrates that CNT-PEDOT composites exhibit a porous morphology whereas PEDOT layers are more compact. Accordingly, capacitance and charge injection capacity of the composite material exceed those of pure PEDOT layers. In vitro cell culture experiments reveal excellent biocompatibility and adhesion of both PEDOT and PEDOT-CNT electrodes. Signals recorded from heart muscle cells demonstrate the high S/N ratio achievable with these electrodes. Long-term pulsing experiments confirm stability of charge injection capacity. In conclusion, a robust fabrication procedure for composite PEDOT-CNT electrodes is demonstrated and results show that these electrodes are well suited for stimulation and recording in cardiac and neurophysiological research.

2.
Adv Mater ; 24(21): 2916-21, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22549848

ABSTRACT

Cyclic electrodeposition of platinum and copper enables the fabrication of high surface area electrodes (roughness factors of >3000) by multiple alternation of alloy co-deposition and dealloying of copper from the just-fabricated alloy layers. The underlying processes, resulting electrode structures, and their applicability to potentially implantable glucose fuel cells are discussed.


Subject(s)
Alloys/chemistry , Copper/chemistry , Platinum/chemistry , Bioelectric Energy Sources , Biosensing Techniques , Electrodes , Electroplating , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...